【題目】某校高三共有1000位學(xué)生,為了分析某次的數(shù)學(xué)考試成績(jī),采取隨機(jī)抽樣的方法抽取了50位高三學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,得到如圖所示頻數(shù)分布表:

分組

頻數(shù)

3

11

18

12

6

(1)根據(jù)頻數(shù)分布表計(jì)算成績(jī)?cè)?/span>的頻率并計(jì)算這組數(shù)據(jù)的平均值(同組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替);

(2)用分層抽樣的方法從成績(jī)?cè)?/span>的學(xué)生中共抽取5人,從這5人中任取2人,求成績(jī)?cè)?/span>中各有1人的概率.

【答案】(1) (2)

【解析】

(1)根據(jù)頻率分布表知成績(jī)?cè)?/span>內(nèi)的人數(shù),即可求解其概率,再根據(jù)平均數(shù)的計(jì)算公式,即可求解平均數(shù);

(2)根據(jù)分層抽樣得應(yīng)在中分別抽取3人和2人,利用列舉法求得基本事件的總數(shù)和所求事件包含基本事件的個(gè)數(shù),利用古典概型的概率計(jì)算公式,即可求解.

(1)根據(jù)頻率分布表知成績(jī)?cè)?/span>內(nèi)的概率為,

.

(2)根據(jù)分層抽樣得應(yīng)在中分別抽取3人和2人,將中的3人編號(hào)為1,2,3,將中的2人編號(hào)為,,則此事件中的所有基本事件為,,,,,,,,共10個(gè),

記成績(jī)?cè)?/span>中各有1人為事件,事件包含的基本事件有6個(gè),

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】趙爽是我國(guó)漢代數(shù)學(xué)家、天文學(xué)家,他在注解《周髀算經(jīng)》時(shí),介紹了勾股圓方圖,亦稱趙爽弦圖,它被2002年國(guó)際數(shù)學(xué)家大會(huì)選定為會(huì)徽.“趙爽弦圖是以弦為邊長(zhǎng)得到的正方形,該正方形由4個(gè)全等的直角三角形加上中間一個(gè)小正方形組成類比趙爽弦圖,可類似地構(gòu)造如圖所示的圖形它是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成的一個(gè)大等邊三角形設(shè)DF2AF2,若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自三個(gè)全等三角形(陰影部分)的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中為常數(shù)).

1)若上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

2)若上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓中心在坐標(biāo)原點(diǎn),是它的兩個(gè)頂點(diǎn),直線AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).

)若,求的值;

)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù)處取得極值,其中.

1)求實(shí)數(shù)t的取值范圍;

2)判斷上的單調(diào)性并證明;

3)已知上的任意、,都有,令,若函數(shù)3個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐PABCD的底面ABCD是平行四邊形,∠BCD=135°,PA⊥平面ABCD,AB=AC=PA=2,E,F,M分別為線段BC,AD,PD的中點(diǎn).

(1)求證:直線EF⊥平面PAC;

(2)求平面MEF與平面PBC所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論上的零點(diǎn)個(gè)數(shù);

(2)當(dāng)時(shí),若存在,使,求實(shí)數(shù)的取值范圍.(為自然對(duì)數(shù)的底數(shù),其值為2.71828……)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù), .(1)討論的極值點(diǎn)的個(gè)數(shù);(2)若對(duì)于,總有.(i)求實(shí)數(shù)的取值范圍;(ii)求證:對(duì)于,不等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;

2)若直線l與曲線C相交于AB兩點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案