已知拋物線y2=2px(p>0)焦點(diǎn)F恰好是雙曲線
x2
a2
-
y2
b2
=1(a,b>0)的右焦點(diǎn),且雙曲線過點(diǎn)(
3a2
p
,
2b2
p
),則雙曲線的漸近線方程為
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由題設(shè)知p=2c.
9a4
p2
a2
-
4b4
p2
b2
=1
,所以
9a2-4b2=1
a2+b2=c2
,解得a=b,由此知該雙曲線的漸近線方程.
解答: 解:∵拋物線y2=2px(p>0)焦點(diǎn)F恰好是雙曲線
x2
a2
-
y2
b2
=1((a>0,b>0)的右焦點(diǎn),
∴c=
p
2
,p=2c.
∵雙曲線過點(diǎn)(
3a2
p
,
2b2
p
),
∴.
9a4
p2
a2
-
4b4
p2
b2
=1
,
∵p=2c,
∴9a2-4b2=4c2,
又a2+b2=c2
解得
b
a
=
10
4
,
∴該雙曲線的漸近線方程為y=±
10
4
x.
故答案為y=±
10
4
x
點(diǎn)評(píng):本題考查雙曲線的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα+
2
cosα=
3
,則tanα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)的圖象是一條連續(xù)不斷地曲線,且有部分對(duì)應(yīng)值如表所示,那么函數(shù)f(x)一定存在零點(diǎn)的區(qū)間是( 。
x123
f(x)-
3
2
-1
3
2
A、(-∞,1)
B、(1,2)
C、(2,3)
D、(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)單位向量
a
,
b
c
滿足:
a
b
=0,存在實(shí)數(shù)x,y使得
c
=x
a
+y
b
,則實(shí)數(shù)x+y的取值范圍是(  )
A、[-1,1]
B、[0,1]
C、[-
2
2
]
D、[0,
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l和平面α,無論直線l與平面α具有怎樣的位置關(guān)系,在平面α內(nèi)總存在一條直線與直線l( 。
A、相交B、平行C、垂直D、異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,該集合體的體積是( 。
A、30B、40C、50D、60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為F1和F2且|F1F2|=2,點(diǎn)P(1,
3
2
)在該橢圓上.(Ⅰ)求橢圓C的方程;
(Ⅱ)過F1的直線l與橢圓C相交于A,B兩點(diǎn),若△A F2B的面積為
12
7
7
,求以F2為圓心且與直線l相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年9月4日國(guó)務(wù)院新聞辦公室舉行《關(guān)于深化考試招生制度改革的實(shí)施意見》情況發(fā)布會(huì),宣告新的高考制度改革正式拉開帷幕.該《實(shí)施意見》提出了“兩依據(jù)、一參考”,其中一個(gè)依據(jù)是高考成績(jī),另一個(gè)依據(jù)是高中學(xué)業(yè)水平考試成績(jī).強(qiáng)調(diào)了把高中學(xué)業(yè)水平考試作為考察學(xué)生學(xué)業(yè)完成情況的一個(gè)重要方式.近日,某調(diào)研機(jī)構(gòu)在某地區(qū)對(duì)“在這種情況下學(xué)生的課業(yè)負(fù)擔(dān)是否會(huì)加重?”這一問題隨機(jī)選擇3600人進(jìn)行問卷調(diào)查.調(diào)查結(jié)果統(tǒng)計(jì)如下:
會(huì)不會(huì)不知道
在校學(xué)生2100120y
社會(huì)人士600xz
已知在全體被調(diào)查者中隨機(jī)抽取一人,抽到持“不會(huì)”意見的人的概率為0.05.
(Ⅰ) 求x和y+z的值;
(Ⅱ) 在持“不會(huì)”意見的被調(diào)查者中,用分層抽樣的方法抽取6個(gè)人,然后把他們隨機(jī)分成兩組,每組3人,進(jìn)行深入交流,求第一組中社會(huì)人士人數(shù)ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合P={x||x-1|≤
1
2
,x∈R},Q={x|x∈N},則P∩Q等于( 。
A、[0,1]B、{0,1}
C、{1}D、{0}

查看答案和解析>>

同步練習(xí)冊(cè)答案