【題目】已知二項式 的展開式.

(1)求展開式中含項的系數(shù);

(2)如果第項和第項的二項式系數(shù)相等,求的值.

【答案】(1);(2)1

【解析】試題分析:(1)寫出二項展開式的通項公式,當的指數(shù)是,可得到關(guān)于方程,解方程可得的值從而可得展開式中含項的系數(shù);(2)根據(jù)上一問寫出的通項公式,利用第項和第項的二項式系數(shù)相等,可得到一個關(guān)于的方程,解方程即可得結(jié)果.

試題解析(1)設第k+1項為Tk+1

令10-k=4,解得k=4,

故展開式中含x4項的系數(shù)為3 360.

(2)∵第3r項的二項式系數(shù)為,第r+2項的二項式系數(shù)為

,故3r-1=r+1或3r-1+r+1=10,

解得r=1或r=2.5(不合題意,舍去),∴r=1.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx),gx)滿足關(guān)系gx)=fxfx),其中α是常數(shù).

(1)設fx)=cosx+sinx,求gx)的解析式;

(2)設計一個函數(shù)fx)及一個α的值,使得

(3)當fx)=|sinx|+cosx時,存在x1x2R,對任意xRgx1)≤gx)≤gx2)恒成立,求|x1-x2|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給定下列四個命題:

若一個平面內(nèi)的兩條直線與另一個平面都平行,那么這兩個平面相互平行;

若一個平面經(jīng)過另一個平面的垂線,那么這兩個平面相互垂直;

垂直于同一直線的兩條直線相互平行;

若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直.

其中,為真命題的是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱臺ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,

(1)求證:EF⊥平面ACFD;
(2)求二面角B﹣AD﹣F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)的圖像有兩個不同交點,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5kg,乙材料1kg,用5個工時;生產(chǎn)一件產(chǎn)品B需要甲材料0.5kg,乙材料0.3kg,用3個工時,生產(chǎn)一件產(chǎn)品A的利潤為2100元,生產(chǎn)一件產(chǎn)品B的利潤為900元.該企業(yè)現(xiàn)有甲材料150kg,乙材料90kg,則在不超過600個工時的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤之和的最大值為元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓離心率為,是橢圓的左、右焦點,以為圓心,為半徑的圓和以為圓心、為半徑的圓的交點在橢圓上.

(1)求橢圓的方程;

(2)設橢圓的下頂點為,直線與橢圓交于兩個不同的點,是否存在實數(shù)使得以為鄰邊的平行四邊形為菱形?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代有計算多項式值的秦九韶算法,如圖是實現(xiàn)該算法的程序框圖.執(zhí)行該程序框圖,若輸入的x=2,n=2,依次輸入的a為2,2,5,則輸出的s=(  )

A.7
B.12
C.17
D.34

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知fx)是定義域為R的偶函數(shù),f(-1)=3,且當x≥0時,fx)=2x+x+cc是常數(shù)),則不等式fx-1)<6的解集是( 。

A. B. C. D.

查看答案和解析>>

同步練習冊答案