設(shè)x,y∈R,a>1,b>1,若ax=by=3,a+b=2
3
,求
1
x
+
1
y
的最大值.
考點(diǎn):基本不等式
專題:計(jì)算題,不等式的解法及應(yīng)用
分析:由ax=by=3,求出x,y,進(jìn)而可表示
1
x
+
1
y
,再利用基本不等式,即可求
1
x
+
1
y
的最大值.
解答: 解:∵ax=by=3,∴x=loga3,y=logb3,
1
x
+
1
y
=log3a+log3b=log3ab,
∵a+b=2
3
≥2
ab
,
∴ab≤3(當(dāng)且僅當(dāng)a=b時(shí),取等號(hào)),
1
x
+
1
y
≤log33=1,
1
x
+
1
y
的最大值為1.
點(diǎn)評(píng):本題考查基本不等式的運(yùn)用,考查對(duì)數(shù)運(yùn)算,考查學(xué)生分析轉(zhuǎn)化問題的能力,正確表示
1
x
+
1
y
是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為了研究玉米品種對(duì)產(chǎn)量的影響,某農(nóng)科院對(duì)一塊試驗(yàn)田種植的一批玉米共10000株的生長情況進(jìn)行研究,現(xiàn)采用分層抽樣方法抽取50株作為樣本,統(tǒng)計(jì)結(jié)果如下:
高桿矮桿合計(jì)
圓粒111930
皺粒13720
合計(jì)242650
(1)現(xiàn)采用分層抽樣的方法,從該樣本所含的圓粒玉米中取出6株玉米,再從這6株玉米中隨機(jī)選出2株,求這2株之中既有高桿玉米又有矮桿玉米的概率;
(2)根據(jù)對(duì)玉米生長情況作出的統(tǒng)計(jì),是否能在犯錯(cuò)誤的概率不超過0.050的前提下認(rèn)為玉米的圓粒與玉米的高桿有關(guān)?(下面的臨界值表和公式可供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)設(shè)函數(shù)f(x)=
sinx+a
sinx
(0<x<π),如果a>0,函數(shù)f(x)是否存在最大值和最小值,如果存在請(qǐng)寫出最大(。┲导皩(duì)應(yīng)x值的集合;
(2)已知k<0,求函數(shù)y=sin2x+k(cosx-1)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

高爾頓板是英國生物統(tǒng)計(jì)學(xué)家高爾頓設(shè)計(jì)用來研究隨機(jī)現(xiàn)象的模型,在一塊木板上釘著若干排相互平行但相互錯(cuò)開的圓柱形小木塊,小木塊之間留有適當(dāng)?shù)目障蹲鳛橥ǖ,前面擋有一塊玻璃.讓一個(gè)小球從高爾頓板上方的通道口落下,小球在下落的過程中與層層小木塊碰撞,且等可能向左或向右滾下,最后掉入高爾頓板下方的某一球槽內(nèi).如圖所示的高爾頓板有7層小木塊,小球從通道口落下,第一次與第2層中間的小木塊碰撞,以
1
2
的概率向左或向右滾下,依次經(jīng)過6次與小木塊碰撞,最后掉入編號(hào)為1,2,…,7的球槽內(nèi).例如小球要掉入3號(hào)球槽,則在6次碰撞中有2次向右4次向左滾下.
(1)若進(jìn)行一次高爾頓板試驗(yàn),這個(gè)小球掉入2號(hào)球槽的概率;
(2)某高三同學(xué)在研究了高爾頓板后,制作了一個(gè)如圖所示的高爾頓板來到社團(tuán)文化節(jié)上進(jìn)行盈利性“抽獎(jiǎng)”活動(dòng).10元可以玩一次高爾頓板游戲,小球掉入m號(hào)球槽得到的獎(jiǎng)金為ξ元,其中ξ=|20-5m|.高爾頓板游戲火爆進(jìn)行,很多同學(xué)參加了游戲.試求ξ的分布列,如果你在活動(dòng)現(xiàn)場,你通過數(shù)學(xué)期望的計(jì)算后,你覺得這位高三同學(xué)能盈利嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
>a對(duì)于一切大于1的自然數(shù)n都成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=log
1
2
1-ax
x-1
為奇函數(shù),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z=1+2i,則z3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a3=50,a5=30,則a7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)y=(m2-9m+19)x2m2-7m-9的圖象不過原點(diǎn),則m的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案