【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量表得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
(I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:
(II)估計這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%”的規(guī)定?
【答案】(1)
(2)質(zhì)量指標(biāo)值的樣本平均數(shù)為100,質(zhì)量指標(biāo)值的樣本方差為104
(3)不能認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品80%”的規(guī)定.
【解析】
試題分析:(1)根據(jù)頻率分布表與頻率分布直方圖的關(guān)系,先根據(jù):頻率=頻數(shù)/總數(shù)計算出各組的頻率,再根據(jù):高度=頻率/組距計算出各組的高度,即可以組距為橫坐標(biāo)高度為縱坐標(biāo)作出頻率分布直方圖;(2)根據(jù)題意欲計算樣本方差先要計算出樣本平均數(shù),由平均數(shù)計算公式可得:質(zhì)量指標(biāo)值的樣本平均數(shù)為,進(jìn)而由方差公式可得:質(zhì)量指標(biāo)值的樣本方差為;(3)根據(jù)題意可知質(zhì)量指標(biāo)值不低于95的產(chǎn)品所占比例的估計值為,由于該估計值小于0.8,故不能認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品80%”的規(guī)定.
試題解析:(1)
(2)質(zhì)量指標(biāo)值的樣本平均數(shù)為
.
質(zhì)量指標(biāo)值的樣本方差為
.
所以這種產(chǎn)品質(zhì)量指標(biāo)值
(3)質(zhì)量指標(biāo)值不低于95的產(chǎn)品所占比例的估計值為
,
由于該估計值小于0.8,故不能認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品80%”的規(guī)定.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機(jī)擲兩枚質(zhì)地均勻的骰子,它們向上的點數(shù)之和不超過5的概率記為p1,點數(shù)之和大于5的概率記為p2,點數(shù)之和為偶數(shù)的概率記為p3,則( )
A. p1<p2<p3 B. p2<p1<p3
C. p1<p3<p2 D. p3<p1<p2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),當(dāng)時,的極大值為;當(dāng)時,有極小值。求:
(1)的值;
(2)函數(shù)的極小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“中國式過馬路”的大意是湊夠一撮人即可走,跟紅綠燈無關(guān).部分法律專家的觀點為“交通規(guī)則的制定目的就在于服務(wù)城市管理,方便行人,而‘中國式過馬路’是對我國法治化進(jìn)程的嚴(yán)重阻礙,反應(yīng)了國人規(guī)則意識的淡薄.”某新聞媒體對此觀點進(jìn)行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”“中立”和“不支持”態(tài)度的人數(shù)如表所示:
支持 | 中立 | 不支持 | |
20歲以下 | 700 | 450 | 200 |
20歲及以上 | 200 | 150 | 300 |
在所有參與調(diào)查的人中,用分層隨機(jī)抽樣的方法抽取人,則持“支持”態(tài)度的人中20歲及以上的有_________人
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年元旦班級聯(lián)歡晚會上,某班在聯(lián)歡會上設(shè)計了一個摸球表演節(jié)目的游戲,在一個紙盒中裝有1個紅球,1個黃球,1個白球和1個黑球,這些球除顏色外完全相同,A同學(xué)不放回地每次摸出1個球,若摸到黑球則停止摸球,否則就要將紙盒中的球全部摸出才停止.規(guī)定摸到紅球表演兩個節(jié)目,摸到白球或黃球表演一個節(jié)目,摸到黑球不用表演節(jié)目.
(1)求A同學(xué)摸球三次后停止摸球的概率;
(2)記X為A同學(xué)摸球后表演節(jié)目的個數(shù),求隨機(jī)變量X的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型超市在2018年元旦舉辦了一次抽獎活動,抽獎箱里放有3個紅球,3個黃球和1個藍(lán)球(這些小球除顏色外大小形狀完全相同),從中隨機(jī)一次性取3個小球,每位顧客每次抽完獎后將球放回抽獎箱.活動另附說明如下:
①凡購物滿100(含100)元者,憑購物打印憑條可獲得一次抽獎機(jī)會;
②凡購物滿188(含188)元者,憑購物打印憑條可獲得兩次抽獎機(jī)會;
③若取得的3個小球只有1種顏色,則該顧客中得一等獎,獎金是一個10元的紅包;
④若取得的3個小球有3種顏色,則該顧客中得二等獎,獎金是一個5元的紅包;
⑤若取得的3個小球只有2種顏色,則該顧客中得三等獎,獎金是一個2元的紅包.
抽獎活動的組織者記錄了該超市前20位顧客的購物消費數(shù)據(jù)(單位:元),繪制得到如圖所示的莖葉圖.
(1)求這20位顧客中獎得抽獎機(jī)會的顧客的購物消費數(shù)據(jù)的中位數(shù)與平均數(shù)(結(jié)果精確到整數(shù)部分);
(2)記一次抽獎獲得的紅包獎金數(shù)(單位:元)為,求的分布列及數(shù)學(xué)期望,并計算這20位顧客(假定每位獲得抽獎機(jī)會的顧客都會去抽獎)在抽獎中獲得紅包的總獎金數(shù)的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且經(jīng)過點,兩個焦點分別為.
(1)求橢圓的方程;
(2)過的直線與橢圓相交于兩點,若的內(nèi)切圓半徑為,求以為圓心且與直線相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,直線與平面和平面分別交于點G,H.
求證:點G,H是線段的三等分點;
在棱上是否存在點M,使得二面角的大小為?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年1月6日北京時間上午11時30分,朝鮮中央電視臺宣布“成功進(jìn)行了氫彈試驗”,再次震動世界,此事件也引起了我國公民熱議,其中丹東市(丹東市和朝鮮隔江)某聊天群有300名網(wǎng)友,烏魯木齊市某微信群有200名網(wǎng)友,為了解不同地區(qū)我國公民對“氫彈試驗”事件的關(guān)注程度,現(xiàn)采用分層抽樣的方法,從中抽取了100名網(wǎng)友,先分別統(tǒng)計了他們在某時段發(fā)表的信息條數(shù),再將兩地網(wǎng)友發(fā)表的信息條數(shù)分成5組:,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(1)求丹東市網(wǎng)友的平均留言條數(shù)(保留整數(shù));
(2)為了進(jìn)一步開展調(diào)查,從樣本中留言條數(shù)不足50條的網(wǎng)友中隨機(jī)抽取2人,求至少抽到一名烏魯木齊市網(wǎng)友的概率;
(3)規(guī)定“留言條數(shù)”不少于70條為“強(qiáng)烈關(guān)注”.
①請你根據(jù)已知條件完成下列的列聯(lián)表:
強(qiáng)烈關(guān)注 | 非強(qiáng)烈關(guān)注 | 合計 | |
丹東市 | |||
烏魯木齊市 | |||
合計 |
②判斷是否有的把握認(rèn)為“強(qiáng)烈關(guān)注”與網(wǎng)友所在的地區(qū)有關(guān)?
附:臨界值表及參考公式:
,其中
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com