【題目】根據(jù)下列條件分別寫(xiě)出直線的方程,并化為一般式方程:
(1)斜率是,且經(jīng)過(guò)點(diǎn)A(5,3) 的直線方程為___________
(2)斜率為4,在y軸上的截距為-2的直線方程為__________
(3)經(jīng)過(guò)點(diǎn)A(-1,5),B(2,-1)兩點(diǎn)的直線方程為____________
(4)在x軸,y軸上的截距分別為-3,-1的直線方程為___________
(5)斜率是-,且經(jīng)過(guò)點(diǎn)A(8,-6)的直線方程為_________
(6)經(jīng)過(guò)點(diǎn)B(4,2),且平行于x軸的直線方程為__________
(7)在x軸和y軸上的截距分別是和-3的直線方程為_________
(8)經(jīng)過(guò)點(diǎn)P1(3,-2),P2(5,-4)的直線方程為__________
【答案】 x-y-5+3=0. 4x-y-2=0. 2x+y-3=0. 2x+y-3=0. x+2y+4=0. y-2=0. 2x-y-3=0. x+y-1=0.
【解析】
根據(jù)直線方程的形式:點(diǎn)斜式、斜截式、兩點(diǎn)式和截距式方程的形式,即可求解所求直線的方程.
(1)由直線的點(diǎn)斜式方程可知,所求直線的方程為,
即所求直線的方程為;
(2)由直線的截距式方程可知,所求直線的方程為,即所求方程為;
(3)由直線的兩點(diǎn)式方程可知,所求直線的方程為,
即所求直線的方程為;
(4)由直線的截距式方程可知,所求直線的方程為,
即所求直線的方程為;
(5)由直線的點(diǎn)斜式方程可知,所求直線的方程為,
即所求直線的方程為;
(6)由題意,直線平行于軸,所以斜率,所以所求方程為;
(7)由直線的截距式方程可知,所求直線的方程為,
即所求直線的方程為;
(8)由直線的兩點(diǎn)式方程可知,所求直線的方程為,
即所求直線的方程為;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分10分)已知等差數(shù)列{an}滿足a1+a2=10,a4-a3=2.
(1)求{an}的通項(xiàng)公式.
(2)設(shè)等比數(shù)列{bn}滿足b2=a3,b3=a7.問(wèn):b6與數(shù)列{an}的第幾項(xiàng)相等?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某地一天從 6 ~ 14 時(shí)的溫度變化曲線近似滿足函數(shù):,則中午 12 點(diǎn)時(shí)最接近的溫度為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了增強(qiáng)消防安全意識(shí),某中學(xué)對(duì)全體學(xué)生做了一次消防知識(shí)講座,從男生中隨機(jī)抽取50人,從女生中隨機(jī)抽取70人參加消防知識(shí)測(cè)試,統(tǒng)計(jì)數(shù)據(jù)得到如下列聯(lián)表:
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
男生 | 15 | 35 | 50 |
女生 | 30 | 40 | 70 |
總計(jì) | 45 | 75 | 120 |
(Ⅰ)試判斷是否有的把握認(rèn)為消防知識(shí)的測(cè)試成績(jī)優(yōu)秀與否與性別有關(guān);
附:
K2=
(Ⅱ)為了宣傳消防安全知識(shí),從該校測(cè)試成績(jī)獲得優(yōu)秀的同學(xué)中采用分層抽樣的方法,隨機(jī)選出6名組成宣傳小組,現(xiàn)從這6人中隨機(jī)抽取2名到校外宣傳,求到校外宣傳的同學(xué)中至少有1名是男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),函數(shù).
若無(wú)零點(diǎn),求實(shí)數(shù)k的取值范圍;
若有兩個(gè)相異零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中裝有紅球3個(gè)、白球2個(gè)、黑球1個(gè),從中任取2個(gè),則互斥而不對(duì)立的兩個(gè)事件是( )
A. 至少有一個(gè)白球;至少有一個(gè)紅球 B. 至少有一個(gè)白球;紅、黑球各一個(gè)
C. 恰有一個(gè)白球;一個(gè)白球一個(gè)黑球 D. 至少有一個(gè)白球;都是白球
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某小學(xué)隨機(jī)抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖).若要從身高在[100,110),[110,120),[120,130)三組內(nèi)的學(xué)生中,用分層抽樣的方法選取28人參加一項(xiàng)活動(dòng),則從身高在[120,130)內(nèi)的學(xué)生中選取的人數(shù)應(yīng)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ln(ax+ )+ .
(1)若a>0,且f(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)是否存在實(shí)數(shù)a,使得函數(shù)f(x)在(0,+∞)上的最小值為1?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為, 為的中點(diǎn), 為線段上的動(dòng)點(diǎn),過(guò)點(diǎn), , 的平面截該正方體所得的截面為,則下列命題正確的是__________(寫(xiě)出所有正確命題的編號(hào)).
①當(dāng)時(shí), 為四邊形;②當(dāng)時(shí), 為等腰梯形;
③當(dāng)時(shí), 與的交點(diǎn)滿足;
④當(dāng)時(shí), 為五邊形;
⑤當(dāng)時(shí), 的面積為.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com