分析 (Ⅰ)利用兩角和差的正弦公式結(jié)合輔助角公式進(jìn)行化簡(jiǎn)即可求f(x)的最小正周期;
(Ⅱ)根據(jù)函數(shù)f(x)的定義域?yàn)?[-\frac{π}{6},\frac{π}{4}]$,結(jié)合函數(shù)單調(diào)性和值域之間的關(guān)系即可求單調(diào)遞減區(qū)間和值域.
解答 解:(Ⅰ)∵$f(x)=4cosxsin(x+\frac{π}{6})-1=4cosx(sinxcos\frac{π}{6}+cosxsin\frac{π}{6})-1$
=$4cosx(\frac{{\sqrt{3}}}{2}sinx+\frac{1}{2}cosx)-1=2\sqrt{3}sinxcosx+2{cos^2}x-1$=$\sqrt{3}sin2x+cos2x=2sin(2x+\frac{π}{6})$…(4分)
所以f(x)的最小正周期為π.…(6分)
(Ⅱ)①令$2kπ+\frac{π}{2}≤2x+\frac{π}{6}≤2kπ+\frac{3π}{2}$,則$kπ+\frac{π}{6}≤x≤kπ+\frac{2π}{3}$,當(dāng)k=0時(shí)有$\frac{π}{6}≤x≤\frac{2π}{3}$,
又∵$x∈[-\frac{π}{6},\frac{π}{4}]$,∴函數(shù)f(x)的單調(diào)遞減區(qū)間為$[\frac{π}{6},\frac{π}{4}]$;…(9分)
②由$-\frac{π}{6}≤x≤\frac{π}{4}$得$-\frac{π}{6}≤2x+\frac{π}{6}≤\frac{2π}{3}$,于是
當(dāng)$2x+\frac{π}{6}=\frac{π}{2}$,即$x=\frac{π}{6}$,f(x)取的最大值為2;
當(dāng)$2x+\frac{π}{6}=-\frac{π}{6}$,即$x=-\frac{π}{6}$,f(x)取的最小值為-1.
∴函數(shù)f(x)的值域?yàn)閇-1,2]…(12分)
點(diǎn)評(píng) 本題主要考查三角函數(shù)圖象和性質(zhì),根據(jù)輔助角公式進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.考查學(xué)生的運(yùn)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,5] | B. | [2,5] | C. | [2,+∞) | D. | (-∞,2]∪[5,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com