【題目】設(shè)集合A={(x,y)|x,y,1﹣x﹣y是三角形的三邊長},則A所表示的平面區(qū)域(不含邊界的陰影部分)是(
A.
B.
C.
D.

【答案】A
【解析】解答:∵x,y,1﹣x﹣y是三角形的三邊長∴x>0,y>0,1﹣x﹣y>0, 并且x+y>1﹣x﹣y,x+(1﹣x﹣y)>y,y+(1﹣x﹣y)>x
,
故選A.
分析:先依據(jù)x,y,1﹣x﹣y是三角形的三邊長,利用三角的兩邊之和大于第三邊得到關(guān)于x,y的約束條件,再結(jié)合二元一次不等式(組)與平面區(qū)域的關(guān)系畫出圖形即可.
【考點精析】通過靈活運用二元一次不等式(組)所表示的平面區(qū)域,掌握不等式組表示的平面區(qū)域是各個不等式所表示的平面區(qū)域的公共部即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,不等式 的解集為[-1,5]
(1)求實數(shù) 的值;
(2)若 恒成立,求實數(shù) 的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項和為Sn , 當a1 , d變化時,若8(a4+a6+a8)+(a10+a12+a14+a16)是一個定值,那么下列各數(shù)中也為定值的是(
A.S7
B.S8
C.S13
D.S15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中,動點M到定點F(-,0)的距離與它到定直線l:x=-的距離之比為常數(shù).

(1)求動點M的軌跡Γ的方程;

(2)設(shè)點A,P(1)中軌跡Γ上的動點,求線段PA的中點B的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地建一座橋,兩端的橋墩已建好,這兩墩相距640米,余下工程只需要建兩端橋墩之間的橋面和橋墩,經(jīng)預測,一個橋墩的工程費用為256萬元,距離為米的相鄰兩墩之間的橋面工程費用為萬元.假設(shè)橋墩等距離分布,所有橋墩都視為點,且不考慮其他因素,設(shè)需要新建個橋墩,記余下工程的費用為萬元.

(1)試寫出關(guān)于的函數(shù)關(guān)系式;(注意:

(2)需新建多少個橋墩才能使最。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若點Px,y)在圓上,則代數(shù)式的最大值是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】集合M={x|2x+1≥0},N={x|x2﹣(a+1)x+a<0},若NM,則( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx﹣ax2+ax,a為正實數(shù).
(1)當a=2時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)求證:f( )≤0;
(3)若函數(shù)f(x)有且只有1個零點,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù) . (Ⅰ)證明:f(x)≥1;
(Ⅱ)若f(6)<5,求a的取值范圍.

查看答案和解析>>

同步練習冊答案