13.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右頂點分別是A,B,左、右焦點分別是F1,F(xiàn)2,若|F1F2|2=λ|AF1|•|BF2|(0<λ<4),則離心率e的取值范圍是$(0,\frac{1}{2})$.

分析 由已知可得:A(-a,0),B(a,0),左、右焦點分別是F1(-c,0),F(xiàn)2(c,0).根據(jù)|F1F2|2=λ|AF1|•|BF2|,可得λ=$\frac{4{c}^{2}}{(a-c)^{2}}$=$\frac{4{e}^{2}}{1-2e+{e}^{2}}$,利用0<λ<4,解出即可得出.

解答 解:∵A(-a,0),B(a,0),左、右焦點分別是F1(-c,0),F(xiàn)2(c,0).
∵|F1F2|2=λ|AF1|•|BF2|,
∴λ=$\frac{4{c}^{2}}{(a-c)^{2}}$=$\frac{4{e}^{2}}{1-2e+{e}^{2}}$,
∵0<λ<4,
∴0<$\frac{4{e}^{2}}{1-2e+{e}^{2}}$<4,0<e<1,
解得$0<e<\frac{1}{2}$.
故答案為:$(0,\frac{1}{2})$.

點評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、不等式的解法、方程的解法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.從2016年1月1日起,廣東、湖北等18個保監(jiān)局所轄地區(qū)將納入商業(yè)車險改革試點范圍,其中最大的變化是上一年的出險次數(shù)決定了下一年的保費(fèi)倍率,具體關(guān)系如表:
上一年的
出險次數(shù)
012345次以上(含5次)
下一年
保費(fèi)倍率
85%100%125%150%175%200%
連續(xù)兩年沒有出險打7折,連續(xù)三年沒有出險打6折
有評估機(jī)構(gòu)從以往購買了車險的車輛中隨機(jī)抽取1000輛調(diào)查,得到一年中出險次數(shù)的頻數(shù)分布如下(并用相應(yīng)頻率估計車輛每年出險次數(shù)的概率):
一年中出險次數(shù)012345次以上(含5次)
頻數(shù)5003801001541
(1)求某車在兩年中出險次數(shù)不超過2次的概率;
(2)經(jīng)驗表明新車商業(yè)車險保費(fèi)與購車價格有較強(qiáng)的線性相關(guān)關(guān)系,估計其回歸直線方程為:$\widehaty$=120x+1600.(其中x(萬元)表示購車價格,y(元)表示商業(yè)車險保費(fèi)).李先生2016 年1月購買一輛價值20萬元的新車.根據(jù)以上信息,試估計該車輛在2017 年1月續(xù)保時應(yīng)繳交的保費(fèi),并分析車險新政是否總體上減輕了車主負(fù)擔(dān).(假設(shè)車輛下一年與上一年都購買相同的商業(yè)車險產(chǎn)品進(jìn)行續(xù)保)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知全集U=R,集合A={x|-1<x<3},B={x|x>1},則A∩(∁UB)=(  )
A.(-1,1)B.(-1,1]C.[1,3)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知等差數(shù)列{an}的首項為a,公差為-4,其前n項和為Sn.若存在m∈N+,使得Sm=36,則實數(shù)a的最小值為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=$\frac{\sqrt{x}}{{e}^{x}-1}$的定義域為( 。
A.(0,1)B.(1,+∞)C.(0,+∞)D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{{2}^{x}-2,x≥0}\end{array}\right.$,則f(f(-2))=14,函數(shù)f(x)的零點的個數(shù)為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,在長方體ABCD一A′B′C′D′中,點P,Q分別是棱BC,CD上的動點,BC=4,CD=3,CC′=2$\sqrt{3}$,直線CC′與平面PQC′所成的角為30°,則△PQC′的面積的最小值是(  )
A.$\frac{18\sqrt{5}}{5}$B.8C.$\frac{16\sqrt{3}}{3}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.4B.3$\sqrt{3}$+12C.21+$\sqrt{3}$D.$\frac{{3\sqrt{3}}}{2}$+12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=sin($\frac{π}{4}$x+φ)(φ>0)的部分圖象如圖所示,設(shè)P是圖象的最高點,A,B是圖象與x軸的交點,則tan∠APB=-$\frac{8}{11}$.

查看答案和解析>>

同步練習(xí)冊答案