【題目】如圖,在直角梯形中,,平面外一點(diǎn)在平內(nèi)的射影恰在邊的中點(diǎn)上,.
(1)求證:平面平面;
(2)若在線(xiàn)段上,且平面,求點(diǎn)到平面的距離.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)推導(dǎo)出PQ⊥平面ABCD,PQ⊥AD,CD∥BQ,從而BQ⊥AD,進(jìn)而AD⊥平面PBQ,由此能證明平面PQB⊥平面PAD.
(2)連接AC與BQ交于點(diǎn)N,則N為AC中點(diǎn),則點(diǎn)M到平面PAB的距離是點(diǎn)C到平面PAB的距離的,求出三棱錐P-ABC的體積V=,PAB的面積為,設(shè)點(diǎn)M到平面PAB的距離為d,由VC-PAB=VP-ABC,能求出點(diǎn)M到平面PAB的距離.
(1)∵P在平面ABCD內(nèi)的射影Q恰在邊AD上,
∴PQ⊥平面ABCD,
∵AD平面ABCD,∴PQ⊥AD,
∵Q為線(xiàn)段AD中點(diǎn),
∴CD∥BQ,∴BQ⊥AD,∴AD⊥平面PBQ,AD平面PAD,
∴平面PQB⊥平面PAD.
(2)連接AC與BQ交于點(diǎn)N,則N為AC中點(diǎn),
∴點(diǎn)M到平面PAB的距離是點(diǎn)C到平面PAB的距離的,
在三棱錐P-ABC中,高PQ=,底面積為,
∴三棱錐P-ABC的體積V==,
又△PAB中,PA=AB=2,PB=,
∴△PAB的面積為,
設(shè)點(diǎn)M到平面PAB的距離為d,
由VC-PAB=VP-ABC,得=,
解得d=,
∴點(diǎn)M到平面PAB的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,且過(guò)點(diǎn).
⑴求橢圓的方程;
⑵若在橢圓上有相異的兩點(diǎn)(三點(diǎn)不共線(xiàn)),為坐標(biāo)原點(diǎn),且直線(xiàn),直線(xiàn),直線(xiàn)的斜率滿(mǎn)足.
(。┣笞C: 是定值;
(ⅱ)設(shè)的面積為,當(dāng)取得最大值時(shí),求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線(xiàn)(為參數(shù)),.以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(I)寫(xiě)出曲線(xiàn)與圓的極坐標(biāo)方程;
(II)在極坐標(biāo)系中,已知射線(xiàn)分別與曲線(xiàn)及圓相交于,當(dāng)時(shí),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn):的焦點(diǎn)為,直線(xiàn)與軸的交點(diǎn)為,與拋物線(xiàn)的交點(diǎn)為,且.
(1)求拋物線(xiàn)的方程;
(2)過(guò)拋物線(xiàn)上一點(diǎn)作兩條互相垂直的弦和,試問(wèn)直線(xiàn)是否過(guò)定點(diǎn),若是,求出該定點(diǎn);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,圓錐的頂點(diǎn)為A,底面的圓心為O,BC是底面圓的一條直徑,點(diǎn)D,E在底面圓上,已知,.
(1)證明:;
(2)若二面角的大小為,求直線(xiàn)OC與平面ACE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).
(1)若曲線(xiàn)在點(diǎn)(處的切線(xiàn)與曲線(xiàn)在點(diǎn)處的切線(xiàn)互相垂直,求函數(shù)在區(qū)間上的最大值;
(2)設(shè)函數(shù),試討論函數(shù)零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市為了解顧客的購(gòu)物量及結(jié)算時(shí)間等信息,安排一名員工隨機(jī)收集了在該超市購(gòu)物的100位顧客的相關(guān)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下表所示,已知這100位顧客中一次購(gòu)物量超過(guò)7件的顧客占.
一次購(gòu)物量 | 1至3件 | 4至7件 | 8至11件 | 12至15件 | 16件及以上 |
顧客數(shù)(人) | 27 | 20 | 10 | ||
結(jié)算時(shí)間(/人) | 0.5 | 1 | 1.5 | 2 | 2.5 |
(1)確定,的值,并求顧客一次購(gòu)物的結(jié)算時(shí)間的平均值;
(2)從收集的結(jié)算時(shí)間不超過(guò)的顧客中,按分層抽樣的方法抽取5人,再?gòu)倪@5人中隨機(jī)抽取2人,求至少有1人的結(jié)算時(shí)間為的概率.(注:將頻率視為概率)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求在區(qū)間上的值域;
(2)是否存在實(shí)數(shù),對(duì)任意給定的,在存在兩個(gè)不同的使得,若存在,求出的范圍,若不存在,說(shuō)出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程:在直角坐標(biāo)系中,曲線(xiàn)(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)求曲線(xiàn)的極坐標(biāo)方程;
(2)已知點(diǎn),直線(xiàn)的極坐標(biāo)方程為,它與曲線(xiàn)的交點(diǎn)為,,與曲線(xiàn)的交點(diǎn)為,求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com