在等差數(shù)列{an}中,a14=
1
a
,a114=
1
b
,a2014=
1
c
,則ab+19bc-20ac=( 。
A、0B、14
C、114D、2014
考點(diǎn):等差數(shù)列的通項(xiàng)公式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列的通項(xiàng)公式求解.
解答: 解:∵等差數(shù)列{an}中,a14=
1
a
,a114=
1
b
,a2014=
1
c
,
a=
1
a1+13d
,b=
1
a1+113d
,c=
1
a1+2013d

∴ab+19bc-20ac
=
1
(a1+13d)(a1+113d)
+
19
(a1+113d)(a1+2013d)
-
20
(a1+13d)(a1+2013d)

=
(a1+2013d)+19(a1+13d)-20(a1+113d)
(a1+13d)(a1+113d)(a1+2013d)

=0.
故選:A.
點(diǎn)評(píng):本題考查等差數(shù)列的通項(xiàng)公式的應(yīng)用,解題時(shí)要認(rèn)真審題,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若4-3a-a2i=a2+4ai(i為虛數(shù)單位),則實(shí)數(shù)a的值為( 。
A、4B、0C、-4D、0或-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Rt△ABC的兩條直角邊的邊長(zhǎng)分別為3和4,若以其中一條直角邊為軸旋轉(zhuǎn)一周,則所形成的幾何體的體積為(  )
A、16π
B、12π或16π
C、36π
D、36π或48π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,最小正周期為π的是( 。
A、y=tan
x
2
B、y=|cosx|
C、y=3sin(x-
π
3
D、y=sin4x+π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)習(xí)小組在一次數(shù)學(xué)測(cè)驗(yàn)中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,則該小組數(shù)學(xué)成績(jī)的平均數(shù)、眾數(shù)、中位數(shù)分別是( 。
A、85,85,85
B、87,85,86
C、87,85,85
D、87,85,90

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(x,2),
b
=(-1,4),且
a
b
,則x=( 。
A、-
1
2
B、
1
2
C、-8
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,側(cè)面PAD⊥底面ABCD,若點(diǎn)E,F(xiàn)分別是PC,BD的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)求證:平面PAD⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2014年6月12號(hào),第二十屆世界杯在巴西拉開(kāi)帷幕,比賽前,某網(wǎng)站組織球迷對(duì)巴西、西班牙、意大利、德國(guó)四支奪冠熱門(mén)球隊(duì)進(jìn)行競(jìng)猜,每位球迷可從四支球隊(duì)中選出一支球隊(duì),現(xiàn)有三人參與競(jìng)猜.
(1)若三人中每個(gè)人可以選擇任一球隊(duì),且選擇各個(gè)球隊(duì)是等可能的,求四支球隊(duì)中恰好有兩支球隊(duì)被選擇的概率;
(2)若三人中只有一名女球迷,假設(shè)女球迷選擇巴西隊(duì)的概率為
1
3
,男球迷選擇巴西隊(duì)的概率為
1
4
,記ξ為三人中選擇巴西隊(duì)的人數(shù),求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

與x軸相切且和半圓x2+y2=9(0≤y≤3)內(nèi)切的動(dòng)圓圓心的軌跡方程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案