(2012•吉林二模)若函數(shù)y=Asin(ωx+φ)+b(A>0,ω>0,|φ|<
π
2
)在一個周期內(nèi)的圖象如圖所示,則函數(shù)的解析式為( 。
分析:由函數(shù)的圖象的頂點縱坐標(biāo)求出求出A,由周期求出ω,根據(jù)五點法作圖求出φ,由平衡位置求出b,從而得到函數(shù)的解析式.
解答:解:由函數(shù)的圖象可得 A=3,
1
4
×
ω
=
π
3
-
π
12
,解得ω=2.
再由五點法作圖可得 2×
π
12
+φ=
π
2
,∴φ=
π
3

再由 b=
3+(-1)
2
=1,可得函數(shù)y=3sin(2x+
π
3
)+1,
故選B.
點評:本題主要考查由函數(shù)y=Asin(ωx+∅)的部分圖象求函數(shù)的解析式,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•吉林二模)設(shè)函數(shù)f(x)=
1-a
2
x2+ax-lnx(a∈R)

(Ⅰ) 當(dāng)a=1時,求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a>1時,討論函數(shù)f(x)的單調(diào)性.
(Ⅲ)若對任意a∈(3,4)及任意x1,x2∈[1,2],恒有
(a2-1)
2
m+ln2>|f(x1)-f(x2)|
成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•吉林二模)設(shè)集合A={x|0≤x<1},B={x|1≤x≤2},函數(shù)f(x)=
2x,(x∈A)
4-2x,(x∈B)
,x0∈A且f[f(x0)]∈A,則x0的取值范圍是
log2
3
2
,1
log2
3
2
,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•吉林二模)設(shè)函數(shù)f(x)=
1-a2
x2+ax-lnx (a∈R)
(Ⅰ)當(dāng)a=1時,求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a>1時,討論函數(shù)f(x)的單調(diào)性.
(Ⅲ)若對任意a∈(2,3)及任意x1,x2∈[1,2],恒有ma+ln2>|f(x1)-f(x2)|成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•吉林二模)△ABC內(nèi)角A,B,C的對邊分別是a,b,c,若c=2
3
b
,sin2A-sin2B=
3
sinBsinC
,則A=
π
6
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•吉林二模)執(zhí)行程序框圖,若輸出的結(jié)果是
15
16
,則輸入的a為( 。

查看答案和解析>>

同步練習(xí)冊答案