8.已知C6x=C62,則x=2或4.

分析 直接利用組合數(shù)的性質(zhì),求解即可.

解答 解:因?yàn)椋篊62=C62,C64=C62,所以C6x=C62,則x=2或4.
故答案為:2或4

點(diǎn)評 本題考查組合數(shù)的性質(zhì)的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax在區(qū)間($\frac{1}{3},+∞}$)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是[-$\frac{2}{9}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下面是關(guān)于復(fù)數(shù)z=$\frac{i}{-1+i}$的四個命題,其中的真命題為( 。
p1:|z|=$\frac{i}{-1+i}$,p2:z2=2i,p3:z的共軛復(fù)數(shù)為$\frac{1+i}{2}$,p4:z的虛數(shù)為-1.
A.p1,p3B.p2,p3C.p2,p4D.p3,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知a,b為直線,α,β,γ為平面,有下列命題中正確的是(  )
A.a∥α,b∥β,則a∥bB.a⊥γ,b⊥γ,則a∥bC.a∥b,b?α,則a∥αD.a⊥b,a⊥α,則b∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)中為偶函數(shù)的是( 。
A.y=$\sqrt{x}$B.y=|x|(x≥1)C.y=x${\;}^{\frac{2}{3}}$D.y=x3+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=sin(2x-$\frac{π}{6}$)+sin(2x+$\frac{π}{6}$)+2cos2x+a-1(a∈R,a是常數(shù)).
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的單調(diào)遞減區(qū)間;
(3)若x∈[0,$\frac{π}{2}$]時,f(x)的最小值為-2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=3sin(-x+$\frac{π}{6}$)的相位和初相分別是( 。
A.-x+$\frac{π}{6}$,$\frac{π}{6}$B.x+$\frac{5π}{6}$,$\frac{5π}{6}$C.x-$\frac{π}{6}$,-$\frac{π}{6}$D.x+$\frac{5π}{6}$,$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知$\underset{lim}{x→2}$$\frac{{x}^{2}+ax+b}{{x}^{2}-x-2}$=2,求常數(shù)a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)復(fù)數(shù)z=(x-1)+yi(x,y∈R),若|z|≤1,則:
(1)復(fù)數(shù)z對應(yīng)的點(diǎn)構(gòu)成的區(qū)域的面積為π
(2)y≥x的概率為$\frac{1}{4}-\frac{1}{2π}$.

查看答案和解析>>

同步練習(xí)冊答案