已知函數(shù)。
(1)求函數(shù)在區(qū)間上最小值;
(2)對(duì)(1)中的,若關(guān)于的方程有兩個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;
(3)若點(diǎn)A,B,C,從左到右依次是函數(shù)圖象上三點(diǎn),且這三點(diǎn)不共線,求證:是鈍角三角形。
見解析.
【解析】本試題主要考查了導(dǎo)數(shù)在函數(shù)中的運(yùn)用。
解:(1)因?yàn)閒(x)=2(x-a),所以=6-4ax=6x(x-a).令=0,得x=0或x=a. …………2分
①若a<,即0<a<1時(shí), 則當(dāng)1x2時(shí), >0,所以f(x)在區(qū)間[1,2]上是增函數(shù), 所以h(a)=f(1)=2-2a. …………4分
②若a<3,即1a<2時(shí), 則當(dāng)1x<a時(shí), <0, 當(dāng)a<x2時(shí)>0, 所以f(x)在區(qū)間[1, a]上是減函數(shù), 所以.在區(qū)間[a ,2]上是增函數(shù), 所以. h(a)== …………6分
③若a3,即a2時(shí),當(dāng)1x2時(shí), 0,所以f(x)在區(qū)間[1,2]上是減函數(shù), 所以h(a)=f(2)=16-8a
綜上所述,函數(shù)f(x)在區(qū)間[1,2]上的最小值是 …………8分
(2).因?yàn)榉匠?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918014792267105/SYS201206191803222039513605_DA.files/image006.png">h(a)=k(a+1)有兩個(gè)不同的實(shí)數(shù)解,令y=k(a+1),可得y=h(a)圖象與直線y=k(a+1)有兩個(gè)不同的交點(diǎn),而直線y=k(a+1)恒過定點(diǎn)(-1,0),由圖象可得的取值范圍是(-8,-2). …………12分
(3).證明:不妨設(shè)<<,由(2)知>>,=(-,-),
=(-,-), 所以=(-)(-)+[-],因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918014792267105/SYS201206191803222039513605_DA.files/image012.png">-<0, ->0, ->0,-<0, 所以<0. 又因?yàn)锳,B,C三點(diǎn)不共線, 所以,即為鈍角三角形…………16分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆山東省臨沂市高三9月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(1)求函數(shù)的定義域 ;
(2)若函數(shù)的最小值為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年人教版高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市奉賢區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆浙江省高二下期中數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)令
(1)求的定義域;
(2)判斷函數(shù)的奇偶性,并予以證明;
(3)若,猜想之間的關(guān)系并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市高三入學(xué)測(cè)試數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)
已知函數(shù) ,
(1)求函數(shù)的定義域;(2)證明:是偶函數(shù);
(3)若,求的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com