如圖四棱錐中,底面是平行四邊形,平面,垂足為,上且,,,的中點,四面體的體積為.

(1)求二面角的正切值;
(2)求直線到平面所成角的正弦值;
(3)在棱上是否存在一點,使異面直線所成的角為,若存在,確定點的位置,若不存在,說明理由.

(1);(2);(3)不存在.

解析試題分析:(1)根據(jù)四面體的體積及底面積可求出.為中點,所以,這樣可得為二面角的平面角.在中即可求得其正切值.
(2)由于面,所以只需在面ABCD內(nèi)過點D作交線BG的垂線,即可得PD在面PBG內(nèi)的射影,從而得PD與面PBG所成的角.(3)存在性的問題,一般都通過建系來求.dsgjghmk兩兩垂直,故可分別以軸建立坐標(biāo)系.
假設(shè)存在且設(shè)
然后用向量的夾角公式求y,如果能求出滿足條件的y則存在,若不能求出滿足條件的y,則不存在.
試題解析:(1)由四面體的體積為.∴
設(shè)二面角的大小為為中點,
同理
                    3分
(2)由
為等腰三角形,GE為的角平分線,作交BG的延長線于K,

由平面幾何知識可知: ,.設(shè)直線與平面所成角為
                      8分
(法二:建系)
(3)兩兩垂直,分別以軸建立坐標(biāo)系
假設(shè)存在且設(shè)
又直線所成的角為
化簡得:
不滿足
∴這樣的點不存在                        12分
考點:1、二面角;2、線與平面所成的角;3、異面直線所成的角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知三棱柱的側(cè)棱長和底面邊長均為2,在底面ABC內(nèi)的射影O為底面△ABC的中心,如圖所示:

(1)聯(lián)結(jié),求異面直線所成角的大。
(2)聯(lián)結(jié)、,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在長方體中,,,分別為、的中點.

(1)求證:平面;
(2)求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.

(1)求異面直線B1C1與AC所成角的大;
(2)若該直三棱柱ABC-A1B1C1的體積為,求點A到平面A1BC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖是一個斜三棱柱,已知、平面平面、,又、分別是、的中點.

(1)求證:∥平面; (2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,平面ABCD,底面ABCD是菱形,,.

(1)求證:平面PAC;
(2)若,求所成角的余弦值;
(3)當(dāng)平面PBC與平面PDC垂直時,求PA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,長方體中點.

(1)求證:;
(2)在棱上是否存在一點,使得平面?若存在,求的長;若不存在,說明理由;
(3)若二面角的大小為,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

正方形ADEF與梯形ABCD所在平面互相垂直,,,,點M在線段EC上且不與E,C重合.

(Ⅰ)當(dāng)點M是EC中點時,求證:平面ADEF;
(Ⅱ)當(dāng)平面BDM與平面ABF所成銳二面角的余弦值為時,求三棱錐M BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在如圖所示的幾何體中,四邊形是菱形,是矩形,平面⊥平面,,,的中點.

(Ⅰ)求證://平面
(Ⅱ)在線段上是否存在點,使二面角的大小為?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案