已知橢圓兩個焦點坐標分別是(5,0),(-5,0),橢圓上一點P到兩個焦點的距離之和為26,則橢圓的方程為
x2
169
+
y2
144
=1
x2
169
+
y2
144
=1
分析:由題意可得:c=5,并且得到橢圓的焦點在x軸上,再根據(jù)橢圓的定義得到a=13,進而由a,b,c的關系求出b的值得到橢圓的方程.
解答:解:∵兩個焦點的坐標分別是(5,0),(-5,0),
∴橢圓的焦點在橫軸上,并且c=5,
∴由橢圓的定義可得:2a=26,即a=13,
∴由a,b,c的關系解得b=12,
∴橢圓方程是 
x2
169
+
y2
144
=1

故答案為:
x2
169
+
y2
144
=1
點評:本題主要考查橢圓的標準方程與橢圓的定義,以及考查橢圓的簡單性質,此題屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓兩個焦點F1,F(xiàn)2的坐標分別為(-2,0),(2,0),并且經(jīng)過點(2,
5
3
)過左焦點F1,斜率為k1,(k1≠0)的直線與橢圓交于A,B兩點.設R(1,0),延長AR,BR分別與橢圓交于C,D兩點.
(I)求橢圓的標準方程;
(Ⅱ)若點A(2,
5
3
),求C點的坐標;
(Ⅲ)設直線CD的斜率為k2,求證:
k1
k2
為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓兩個焦點的坐標分別是(-1,0),(1,0),并且經(jīng)過點(2,0),則它的標準方程是( 。
A、
x2
2
+
y2
3
=1
B、
x2
3
+
y2
2
=1
C、
x2
3
+
y2
4
=1
D、
x2
4
+
y2
3
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知橢圓兩個焦點坐標分別是(5,0),(-5,0),橢圓上一點P到兩個焦點的距離之和為26,則橢圓的方程為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓兩個焦點坐標分別是(5,0),(-5,0),橢圓上一點P到兩個焦點的距離之和為26,則橢圓的方程為______.

查看答案和解析>>

同步練習冊答案