A. | $2-3\sqrt{2}$ | B. | $2+3\sqrt{2}$ | C. | $2±3\sqrt{2}$ | D. | $±(2-3\sqrt{2})$ |
分析 設(shè)此等比數(shù)列的公比為q,1,a,b,c,4構(gòu)成等比數(shù)列,可得4=q4,解得q,即可得出.
解答 解:設(shè)此等比數(shù)列的公比為q,
∵1,a,b,c,4構(gòu)成等比數(shù)列,∴4=q4,解得q=$±\sqrt{2}$.
∴q=$\sqrt{2}$時,a=$\sqrt{2}$,b=2,c=2$\sqrt{2}$,∴a+b+c=2+3$\sqrt{2}$.
q=-$\sqrt{2}$時,a=-$\sqrt{2}$,b=2,c=-2$\sqrt{2}$,∴a+b+c=2-3$\sqrt{2}$.
故選:C.
點評 本題考查了等比數(shù)列的通項公式及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{3\sqrt{13}}{13}$ | D. | $\frac{\sqrt{2}}{2}$或$\frac{3\sqrt{13}}{13}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 最大值為1,圖象關(guān)于直線$x=\frac{π}{2}$對稱 | B. | 周期為π,圖象關(guān)于點($\frac{3π}{8}$,0)對稱 | ||
C. | 在(-$\frac{3π}{8}$,$\frac{π}{8}$)上單調(diào)遞增,為偶函數(shù) | D. | 在$({0,\frac{π}{4}})$上單調(diào)遞增,為奇函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com