(本小題滿分10分)
已知函數(shù)
(1)求
(2)求過點A(0,16)的曲線的切線方程。

解:(1)(2)

解析試題分析:(1)先求出函數(shù)的導數(shù),解初等函數(shù)的導數(shù)得到結論為

(2)根據(jù)導函數(shù)的定義可求出切線的斜率,然后根據(jù)點P的坐標可求出切線的方程.
設切點的坐標為(t,n),然后由上問的導數(shù)值可知斜率為,則可知切線方程為,因此切線過點點A(0,16),代入可知其切線方程為.
考點:導數(shù)的幾何意義的運用
點評:本題考查了利用導函數(shù)求區(qū)間上的最值問題,難度不大,關鍵是掌握導函數(shù)的定義.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),且處取得極值.
(1)求函數(shù)的解析式.
(2)設函數(shù),是否存在實數(shù),使得曲線軸有兩個交點,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

,其中
(1)若有極值,求的取值范圍;
(2)若當,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
已知函數(shù) 
(1) 當時,求函數(shù)的最值;
(2) 求函數(shù)的單調區(qū)間;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知f(x)=(x∈R)在區(qū)間[-1,1]上是增函數(shù).
(Ⅰ)求實數(shù)a的值組成的集合A;
(Ⅱ)設關于x的方程f(x)=的兩個非零實根為x1、x2.試問:是否存在實數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(I)求曲線處的切線方程。
(II)設如果過點可作曲線的三條切線,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分l2分)
已知函數(shù)
(1)若,求函數(shù)的極小值;
(2)設函數(shù),試問:在定義域內是否存在三個不同的自變量使得的值相等,若存在,請求出的范圍,若不存在,請說明理由?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知函數(shù))的圖象為曲線
(Ⅰ)求曲線上任意一點處的切線的斜率的取值范圍;
(Ⅱ)若曲線上存在兩點處的切線互相垂直,求其中一條切線與曲線的切點的橫坐標的取值范圍;
(Ⅲ)試問:是否存在一條直線與曲線C同時切于兩個不同點?如果存在,求出符合條件的所有直線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
求下列函數(shù)的導數(shù)
(1)
(2)

查看答案和解析>>

同步練習冊答案