5.設(shè)平面三點A(1,0),B(0,1),C(2,5).
(1)試求向量$2\overrightarrow{AB}$+$\overrightarrow{AC}$的模;
(2)試求向量$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角.

分析 根據(jù)平面向量的坐標(biāo)表示與運算法則,計算(1)$\overrightarrow{AB}$與$\overrightarrow{AC}$,再求2$\overrightarrow{AB}$+$\overrightarrow{AC}$的模長;
(2)利用數(shù)量積的定義求出向量$\overrightarrow{AB}$與$\overrightarrow{AC}$夾角的余弦值,利用反三角函數(shù)寫出對應(yīng)的角.

解答 解:由A(1,0),B(0,1),C(2,5)得:
(1)$\overrightarrow{AB}$=(-1,1),$\overrightarrow{AC}$=(1,5),
∴2$\overrightarrow{AB}$+$\overrightarrow{AC}$=(-1,5)
∴|2$\overrightarrow{AB}$+$\overrightarrow{AC}$|=$\sqrt{{(-1)}^{2}{+5}^{2}}$=$\sqrt{26}$;
(2)|$\overrightarrow{AB}$|=$\sqrt{{(-1)}^{2}{+1}^{2}}$=$\sqrt{2}$,
|$\overrightarrow{AC}$|=$\sqrt{{1}^{2}{+5}^{2}}$=$\sqrt{26}$,
$\overrightarrow{AB}$•$\overrightarrow{AC}$=-1×1+1×5=4,
∴cosθ=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}|×|\overrightarrow{AC}|}$=$\frac{4}{\sqrt{2}×\sqrt{26}}$=$\frac{2\sqrt{13}}{13}$,
∴向量$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為arccos$\frac{2\sqrt{13}}{13}$.

點評 本題考查了平面向量的坐標(biāo)表示與運算問題,也考查了求向量的夾角與模長問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.sin315°sin(-1260°)+cos390°sin(-1020°)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=2x-1+a,g(x)=bf(1-x),其中a,b∈R.若滿足不等式f(x)≥g(x)的解的最小值為2,則實數(shù)a的取值范圍是( 。
A.a<0B.a>-$\frac{1}{4}$C.a≤-2D.a>-$\frac{1}{4}$或a≤-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x(x-c)2在x=2處有極值且c<3,c∈R.
(1)求c的值;
(2)求f(x)在區(qū)間[0,4]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=ln(1-x)+ax2+x
(1)當(dāng)a=$\frac{1}{2}$時,試判斷f(x)的單調(diào)性.
(2)當(dāng)a>0時,?x∈(0,1),f(x)<0成立,求a的取值范圍.
(3)求證:ln(1+n)-(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$)>1-$\frac{1}{2n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知a>0,用綜合法或分析法證明:$\sqrt{{a}^{2}+\frac{1}{{a}^{2}}}$-$\sqrt{2}$≥a+$\frac{1}{a}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知兩點F1(-1,0)及F2(1,0),點P在以F1、F2為焦點的橢圓C上,且|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列.
(I)求橢圓C的方程;
(Ⅱ)設(shè)經(jīng)過F2的直線m與曲線C交于P、Q兩點,若|PQ|2=|F1P|2+|F1Q|2,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=ex,g(x)為其反函數(shù).
(1)說明函數(shù)f(x)與g(x)圖象的關(guān)系(只寫出結(jié)論即可);
(2)證明f(x)的圖象恒在g(x)的圖象的上方;
(3)設(shè)直線l與f(x)、g(x)均相切,切點分別為(x1,f(x1))、(x2,g(x2)),且x1>x2>0,求證:x1>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下說法正確的是( 。
A.1是集合N中最小的數(shù)B.0是集合Z中最小的數(shù)
C.x-3=0的解集是有限集D.長江中的魚所組成的集合是無限集

查看答案和解析>>

同步練習(xí)冊答案