A. | k≤0 | B. | k≤0或k≥1 | C. | k≤0或k≥e | D. | k≤0或k≥$\frac{1}{e}$ |
分析 根據(jù)函數(shù)與方程的關(guān)系,將條件轉(zhuǎn)化為兩個(gè)函數(shù)的交點(diǎn)個(gè)數(shù)問(wèn)題,利用導(dǎo)數(shù)和數(shù)形結(jié)合進(jìn)行求解即可.
解答 解:由y=f(x)-kx=0得f(x)=kx,
作出函數(shù)f(x)和y=kx的圖象如圖,
由圖象知當(dāng)k≤0時(shí),函數(shù)f(x)和y=kx恒有一個(gè)交點(diǎn),
當(dāng)x≥0時(shí),函數(shù)f(x)=ln(x+1)的導(dǎo)數(shù)f′(x)=$\frac{1}{x+1}$,則f′(0)=1,
當(dāng)x<0時(shí),函數(shù)f(x)=ex-1的導(dǎo)數(shù)f′(x)=ex,則f′(0)=e0=1,
即當(dāng)k=1時(shí),y=x是函數(shù)f(x)的切線,
則當(dāng)0<k<1時(shí),函數(shù)f(x)和y=kx有3個(gè)交點(diǎn),不滿足條件.
當(dāng)k≥1時(shí),函數(shù)f(x)和y=kx有1個(gè)交點(diǎn),滿足條件.
綜上k的取值范圍為k≤0或k≥1,
故選:B.
點(diǎn)評(píng) 本題主要考查函數(shù)零點(diǎn)個(gè)數(shù)的應(yīng)用,利用分段函數(shù)的表達(dá)式,轉(zhuǎn)化為兩個(gè)函數(shù)的交點(diǎn)問(wèn)題是解決本題的關(guān)鍵.注意利用數(shù)形結(jié)合進(jìn)行求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{16}{3}$ | B. | 32 | C. | $\frac{32}{3}$ | D. | $\frac{64}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 24 | C. | 36 | D. | 48 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 16π-$\frac{16}{3}$ | B. | 16π-$\frac{32}{3}$ | C. | 8π-$\frac{16}{3}$ | D. | 8π-$\frac{32}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,3) | B. | (-2,5) | C. | (0,5) | D. | (3,5) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com