【題目】已知函數(shù)f(x)=x2+(1﹣a)x+(1﹣a).a(chǎn)∈R.
(1)當(dāng)a=4時,解不等式f(x)≥7;
(2)若對P任意的x∈(﹣1,+∞),函數(shù)f(x)的圖象恒在x軸上方,求實數(shù)a的取值范圍.

【答案】
(1)解:當(dāng)a=4是,f(x)=x2﹣3x﹣3≥7x2﹣3x﹣10≥0

∴x≥5或 x≤﹣2.

故不等式解集為{x|x≥5或 x≤﹣2}


(2)解:∵x∈(﹣1,+∞)時,函數(shù)f(x)的圖象恒在x軸上方,

∴f(x)=x2+1ax+(1﹣a)≥0

x2+x+1≥ax+1)

∵x>﹣1∴x+1>0

∴a≤

當(dāng)且僅當(dāng)x+1= ,即x=0時取等號.

∴a≤1


【解析】(1)當(dāng)a=4時,轉(zhuǎn)化為x2﹣3x﹣10≥0解不等式;(2)函數(shù)f(x)的圖象恒在x軸上方轉(zhuǎn)化為f(x)≥0(x>﹣1)恒成立,x2+x+1≥ax+1)
在(﹣1,+∞)恒成立,再分離參數(shù)∴a≤ ,求解.
【考點精析】認(rèn)真審題,首先需要了解二次函數(shù)的性質(zhì)(當(dāng)時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時,拋物線開口向下,函數(shù)在上遞增,在上遞減).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)上年度電價為0.8元/kWh,年用電量為akWh,本年度計劃將電價降到0.55 元/kWh至0.75元/kWh之間,而用戶期待電價為0.4元/kWh,下調(diào)電價后新增加的用電量與實際電價和用戶期望電價的差成反比(比例系數(shù)為K),該地區(qū)的電力成本為0.3元/kWh.(注:收益=實際用電量×(實際電價﹣成本價)),示例:若實際電價為0.6元/kWh,則下調(diào)電價后新增加的用電量為 元/kWh)
(1)寫出本年度電價下調(diào)后,電力部門的收益y與實際電價x的函數(shù)關(guān)系;
(2)設(shè)K=0.2a,當(dāng)電價最低為多少仍可保證電力部門的收益比上一年至少增長20%?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|,g(x)=x2+2ax+1(a為正常數(shù)),且函數(shù)f(x)和g(x)的圖象與y軸的交點重合.
(1)求a實數(shù)的值
(2)若h(x)=f(x)+b (b為常數(shù))試討論函數(shù)h(x)的奇偶性;
(3)若關(guān)于x的不等式f(x)﹣2 >a有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在坐標(biāo)原點O,焦點在軸上,離心率為的橢圓C過點

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)不過坐標(biāo)原點O的直線與橢圓C交于P,Q兩點,若,證明:點O到直線的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】不等式ax2+bx+c>0的解集是(1,2),則不等式cx2+bx+a>0的解集是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓曲線方程為 ,兩焦點分別為F1 , F2
(1)若n=﹣1,過左焦點為F1且斜率為 的直線交圓錐曲線于點A,B,求△ABF2的周長.
(2)若n=4,P圓錐曲線上一點,求PF1PF2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓F1:(x+1)2+y2=1,圓F2:(x﹣1)2+y2=25,若動圓C與圓F1外切,且與圓F2內(nèi)切,求動圓圓心C的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,a≠1且loga3>loga2,若函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之差為1.
(1)求a的值;
(2)解不等式
(3)求函數(shù)g(x)=|logax﹣1|的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大;
(2)若b= ,c=1,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案