A. | -2 | B. | -1 | C. | 2${\;}^{\sqrt{3}-1}$-2 | D. | 0 |
分析 先求出∴f(2)=2sin$\frac{π}{6}$-1=0,從而f[f(2)]=f(0),由此能求出結(jié)果.
解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-2,x≤1}\\{2sin(\frac{π}{12}x)-1,x>1}\end{array}\right.$,
∴f(2)=$2sin(\frac{π}{12}×2)-1$=2sin$\frac{π}{6}$-1=0,
f[f(2)]=f(0)=20-2=-1.
故選:B.
點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x2=33y | B. | x2=33y | C. | x2=8y | D. | x2=16y |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | sin$\frac{1}{2}$<cos$\frac{1}{2}$<tan$\frac{1}{2}$ | B. | cos$\frac{1}{2}$<sin$\frac{1}{2}$<tan$\frac{1}{2}$ | ||
C. | sin$\frac{1}{2}$<tan$\frac{1}{2}$<cos$\frac{1}{2}$ | D. | tan$\frac{1}{2}$<sin$\frac{1}{2}$<cos$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1或2 | B. | 2 | C. | 1 | D. | 1或-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題“若a>b,則ac>bc”是真命題 | |
B. | 命題“若a2+b2=0,則a,b全為0”是真命題 | |
C. | 命題“若a=0,則ab=0”的否命題是“若a≠0,則ab≠0” | |
D. | 命題“若a=0,則ab=0”的逆否命題是“若ab≠0,則a≠0” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com