5.已知函數(shù)f(x)=ax2-lnx(a∈R)
(1)當(dāng)a=1時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若?x∈(0,1],|f(x)|≥1恒成立,求a的取值范圍;
(3)若a=$\frac{e}{2}$,證明:ex-1f(x)≥x.

分析 (1)求出導(dǎo)數(shù),由導(dǎo)數(shù)大于0,可得增區(qū)間;導(dǎo)數(shù)小于0,可得減區(qū)間;
(2)求出導(dǎo)數(shù),對a討論,①a≤$\frac{1}{2}$時(shí),②當(dāng)a>$\frac{1}{2}$時(shí),求出單調(diào)區(qū)間,可得最小值,由恒成立思想即可得到a的范圍;
(3)a=$\frac{e}{2}$時(shí),由(Ⅱ)得f(x)min=$\frac{1}{2}$+$\frac{1}{2}$ln2a=1,令h(x)=$\frac{x}{{e}^{x-1}}$,求出導(dǎo)數(shù),單調(diào)區(qū)間,運(yùn)用單調(diào)性即可得證.

解答 解:(1)a=1時(shí),函數(shù)f(x)=x2-lnx,$f'(x)=2x-\frac{1}{x}=\frac{{2{x^2}-1}}{x}$.
函數(shù)f(x)的定義域?yàn)椋?,+∞),
則由f'(x)>0得$x>\frac{{\sqrt{2}}}{2}$,由f'(x)<0得$0<x<\frac{{\sqrt{2}}}{2}$,
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為$(\frac{{\sqrt{2}}}{2},+∞)$,單調(diào)遞減區(qū)間為$(0,\frac{{\sqrt{2}}}{2})$.…(4分)
(2)由已知得f′(x)=2ax-$\frac{1}{x}$.
若f′(x)≤0在(0,1]上恒成立,則2a≤$\frac{1}{{x}^{2}}$恒成立,所以2a≤($\frac{1}{{x}^{2}}$)min=1,即a≤$\frac{1}{2}$.
①a≤$\frac{1}{2}$時(shí),f(x)在(0,1]單調(diào)遞減,f(x)min=f(1)=a,與|f(x)|≥1恒成立矛盾.…(6分)
②當(dāng)a>$\frac{1}{2}$時(shí),令f′(x)=2ax-$\frac{1}{x}$=0,得x=$\sqrt{\frac{1}{2a}}$∈(0,1].
所以當(dāng)x∈(0,$\sqrt{\frac{1}{2a}}$)時(shí),f′(x)<0,f(x)單調(diào)遞減;
當(dāng)x∈($\sqrt{\frac{1}{2a}}$,1]時(shí),f′(x)>0,f(x)單調(diào)遞增.
所以f(x)min=f($\sqrt{\frac{1}{2a}}$)=a($\sqrt{\frac{1}{2a}}$)2-ln$\sqrt{\frac{1}{2a}}$=$\frac{1}{2}$+$\frac{1}{2}$ln2a.
由|f(x)|≥1得,$\frac{1}{2}$+$\frac{1}{2}$ln2a≥1,所以a≥$\frac{e}{2}$.
綜上,所求a的取值范圍是[$\frac{e}{2}$,+∞).…(9分)
(Ⅲ)證明:a=$\frac{e}{2}$時(shí),由(Ⅱ)得f(x)min=$\frac{1}{2}$+$\frac{1}{2}$ln2a=1.…(11分)
令h(x)=$\frac{x}{{e}^{x-1}}$,則h′(x)=$\frac{1-x}{{e}^{x-1}}$.
所以當(dāng)0<x<1時(shí),h′(x)>0,h(x)單增;當(dāng)x≥1時(shí),h′(x)<0,h(x)單減.
所以h(x)≤h(1)=1.…(13分)
所以f(x)≥h(x),即ex-1f(x)≥x.…(14分)

點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求單調(diào)區(qū)間和極值、最值,考查不等式恒成立問題解法和不等式證明,注意運(yùn)用轉(zhuǎn)化思想和構(gòu)造函數(shù)法,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列說法中正確的是.(  )
①獨(dú)立性檢驗(yàn)的基本思想是帶有概率性質(zhì)的反證法;
②獨(dú)立性檢驗(yàn)就是選取一個(gè)假設(shè)Ho條件下的小概率事件,若在一次試驗(yàn)中該事件發(fā)生了,這是與實(shí)際推斷相抵觸的“不合理”現(xiàn)象,則作出拒絕Ho的推斷;
③獨(dú)立性檢驗(yàn)一定能給出明確的結(jié)論.
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知橢圓C:$\frac{x^2}{4}+{y^2}$=1,過點(diǎn)D(0,4)的直線l與橢圓C交于不同兩點(diǎn)M,N(M在D,N之間),有以下四個(gè)結(jié)論:
①若$\overrightarrow{DN}=λ\overrightarrow{DM}$,則λ的取值范圍是1<λ≤$\frac{5}{3}$;
②若A是橢圓C的右頂點(diǎn),且∠MAN的角平分線是x軸,則直線l的斜率為-2;
③若以MN為直徑的圓過原點(diǎn)O,則直線l的斜率為±2$\sqrt{5}$;
④若$\left\{{\begin{array}{l}{{x^'}=x}\\{{y^'}=2y}\end{array}}$,橢圓C變成曲線E,點(diǎn)M,N變成M′,N′,曲線E與y軸交于點(diǎn)P,Q,則直線PN′與QM′的交點(diǎn)必在一條定直線上.
其中正確的序號是①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2+cosθ\\ y=1+sinθ\end{array}\right.$(θ∈[0,π]),且點(diǎn)P(x,y)在曲線C上,則$\frac{y-1}{x}$的取值范圍是( 。
A.$[{0,\frac{{\sqrt{3}}}{3}}]$B.$[{0,\frac{{\sqrt{3}}}{2}}]$C.$[{1,\frac{{\sqrt{3}}}{3}}]$D.$[{0,\sqrt{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知關(guān)于x的不等式|x+1|+|x|≥k恒成立,則實(shí)數(shù)k的取值范圍是(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如x2+y2+x+a=0表示圓,則a的取值范圍是(-∞,$\frac{1}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)是定義在R上奇函數(shù),當(dāng)x>0時(shí),f(x)=log3x-3x,則f(x)的解析式為f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x-{3}^{x},}&{x>0}\\{0}&{x=0}\\{(\frac{1}{3})^{x}-lo{g}_{3}(-x),}&{x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.拋擲兩枚骰子,當(dāng)至少有一枚5點(diǎn)或6點(diǎn)出現(xiàn)時(shí),就說試驗(yàn)成功,則在30次獨(dú)立重復(fù)試驗(yàn)中成功的次數(shù)X的數(shù)學(xué)期望是( 。
A.$\frac{40}{3}$B.$\frac{50}{3}$C.10D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)方程$\sqrt{3}$tan2πx-4tanπx+$\sqrt{3}$=0在[n-1,n)(n∈N*)內(nèi)的所有解之和為an
(Ⅰ)求a1、a2的值,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足:b1=2,bn+1≥a${\;}_{_{n}}$,求證:$\frac{1}{2_{1}-3}$+$\frac{1}{2_{2}-3}$+…+$\frac{1}{2_{n}-3}$<2.

查看答案和解析>>

同步練習(xí)冊答案