已知直線l:y=k(x-2)(k>0)與拋物線C:y2=8x交于A,B兩點,F(xiàn)為拋物線C的焦點,若|AF|=2|BF|,則k的值是(  )
A、
1
3
B、
2
2
3
C、
2
4
D、2
2
考點:拋物線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:由直線l:y=k(x-2)(k>0)與拋物線C:y2=8x,得ky2-8y-16k=0,利用|FA|=2|FB|,可得yB=-
8
k
,yA•yB=-16,即可得出結(jié)論.
解答: 解:直線y=k(x-2)恰好經(jīng)過拋物線y2=8x的焦點F(2,0),
由直線l:y=k(x-2)(k>0)與拋物線C:y2=8x,得ky2-8y-16k=0,
因為|FA|=2|FB|,所以yA=-2yB.則yA+yB=-2yB+yB=
8
k
,所以yB=-
8
k
,yA•yB=-16,
所以-2yB2=-16,即yB=±2
2
.又k>0,故k=2
2
,
故選D.
點評:本題考查拋物線的標準方程、簡單幾何性質(zhì)和直線與圓錐曲線的位置關(guān)系等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n∈R,則“l(fā)gm<lgn”是“em<en”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足
x-y≤2
x-2y≥0
x≥0
,則z=x+2y的最大值是( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈R),則“f(x)是偶函數(shù)”是“φ=2kπ+
π
2
”的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,長方體ABCD-A1B1C1D1中,AB=AA1=2,AD=1,E為CC1的中點,則異面直線BC1與AE所成角的余弦值為( 。
A、
10
10
B、
3
10
10
C、
60
10
D、
30
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(0,7),B(0,-7),C(12,2),以C為一個焦點過A,B的橢圓,橢圓的另一個焦點F的軌跡方程是( 。
A、y2-
x2
48
=1
B、x2-
y2
48
=1
C、y2-
x2
48
=1(y≤-1)
D、x2-
y2
48
=1(y≤-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

整改校園內(nèi)一塊長為15m,寬為11m的長方形草地(如圖A),將長減少1m,寬增加1m(如圖B).問草地面積是增加了還是減少了?假設(shè)長減少x m,寬增加x m(x>0),試研究以下問題:
(1)x取什么值時,草地面積減少?
(2)x取什么值時,草地面積增加?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
A
2
-
A
2
(2ωx+2φ),(A>0,ω>0,0<φ<
π
2
),且y=f(x)的最大值為2,其圖象相鄰兩對稱軸間的距離為2,并過點(1,2),
(1)求 A,ω,φ的值;
(2)計算f(1)+f(2)+…+f(2013)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個漏斗形鐵管接頭,它的母線長是35cm,兩底面直徑分別是50cm和20cm,制作一萬個這樣的接頭需要多少平方米的鐵皮?(取π=3.1,結(jié)果準確到1m2

查看答案和解析>>

同步練習(xí)冊答案