5.若執(zhí)行如圖的程序框圖,輸出S的值為-2,則判斷框中應(yīng)填入的條件是( 。
A.k<2B.k<3C.k<4D.k<5

分析 根據(jù)程序框圖,寫出運行結(jié)果,根據(jù)程序輸出的結(jié)果是S=-2,可得出判斷框內(nèi)應(yīng)填入的條件.

解答 解:執(zhí)行如圖的程序框圖,運行結(jié)果如下:
第1次循環(huán)S=log2$\frac{1}{2}$=-1,k=2;
第2次循環(huán)S=log2$\frac{1}{2}$+log2$\frac{2}{3}$=log2$\frac{1}{3}$,k=3;
第3次循環(huán)S=log2$\frac{1}{3}$+log2$\frac{3}{4}$=log2$\frac{1}{4}$=-2,k=4;
如果輸出S=-2,那么只能進行3次循環(huán),
故判斷框內(nèi)應(yīng)填入的條件是k<4.
故選:C.

點評 本題考查程序框圖,尤其考查循環(huán)結(jié)構(gòu),對循環(huán)體每次循環(huán)需要進行分析并找出內(nèi)在規(guī)律,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓$C:\frac{x^2}{6}+\frac{y^2}{2}=1$,點A(3,0),P是橢圓C上的動點.
(I)若直線AP與橢圓C相切,求點P的坐標(biāo);
(II)若P在y軸的右側(cè),以AP為底邊的等腰△ABP的頂點B在y軸上,求四邊形OPAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作,約成書于四、五世紀(jì),也就是大約一千五百年前,傳本的《孫子算經(jīng)》共三卷.卷中有一問題:“今有方物一束,外周一匝有三十二枚,問積幾何?”該著作中提出了一種解決此問題的方法:“重置二位,左位減八,余加右位,至盡虛加一,即得.”通過對該題的研究發(fā)現(xiàn),若一束方物外周一匝的枚數(shù)n是8的整數(shù)倍時,均可采用此方法求解.如圖,是解決這類問題的程序框圖,若輸入n=40,則輸出的結(jié)果為121.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知復(fù)數(shù)z=|1-i|i2017(其中i為虛數(shù)單位),則$\overline z$的虛部為( 。
A.-1B.-iC.$\sqrt{2}i$D.$-\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了解人們對城市治安狀況的滿意度,某部門對城市部分居民的“安全感”進行調(diào)查,在調(diào)查過程中讓每個居民客觀地對自己目前生活城市的安全感進行評分,并把所得分作為“安全感指數(shù)”,即用區(qū)間[0,100]內(nèi)的一個數(shù)來表示,該數(shù)越接近100表示安全感越高.現(xiàn)隨機對該地區(qū)的男、女居民各500人進行了調(diào)查,調(diào)查數(shù)據(jù)如表所示:
安全感指數(shù)[0,20)[20,40)[40,60)[60,80)[80,100]
男居民人數(shù)816226131119
女居民人數(shù)1214174122178
根據(jù)表格,解答下面的問題:
(Ⅰ)估算該地區(qū)居民安全感指數(shù)的平均值;
(Ⅱ)如果居民安全感指數(shù)不小于60,則認為其安全感好.為了進一步了解居民的安全感,調(diào)查組又在該地區(qū)隨機抽取3對夫妻進行調(diào)查,用X表示他們之中安全感好的夫妻(夫妻二人都感到安全)的對數(shù),求X的分布列及期望(以樣本的頻率作為總體的概率).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知三棱錐P-ABC的各頂點都在同一球的面上,且PA⊥平面ABC,若球O的體積為$\frac{20\sqrt{5}π}{3}$(球的體積公式為$\frac{4π}{3}$R3,其中R為球的半徑),AB=2,AC=1,∠BAC=60°,則三棱錐P-ABC的體積為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ex($\frac{1}{3}$x3-2x2+(a+4)x-2a-4),其中a∈R,e為自然對數(shù)的底數(shù).
(1)關(guān)于x的不等式f(x)<-$\frac{4}{3}$ex在(-∞,2)上恒成立,求a的取值范圍;
(2)討論函數(shù)f(x)極值點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示的幾何體ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥
AB,M是EC上的點(不與端點重合),F(xiàn)為DA上的點,N為BE的中點.
(Ⅰ)若M是EC的中點,AF=3FD,求證:FN∥平面MBD;
(Ⅱ)若平面MBD與平面ABD所成角(銳角)的余弦值為$\frac{1}{3}$,試確定點M在EC上的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知向量$\overrightarrow{m}$=($\sqrt{3}$cosωx,cosωx),$\overrightarrow{n}$=(sinωx,cosωx)(ω>0),函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的最小正周期為π.
(Ⅰ)求ω的值及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在鈍角△ABC中,角A,B,C所對的邊分別為a,b,c,已知a=1,b=$\sqrt{3}$,當(dāng)f(A)取得最大值時,求邊c.

查看答案和解析>>

同步練習(xí)冊答案