精英家教網 > 高中數學 > 題目詳情
有下列敘述
①集合A=(m+2,2m-1)⊆B=(4,5),則m∈[2,3]
②兩向量平行,那么兩向量的方向一定相同或者相反
③若不等式對任意正整數n恒成立,則實數a的取值范圍是
④對于任意兩個正整數m,n,定義某種運算⊕如下:
當m,n奇偶性相同時,m⊕n=m+n;當m,n奇偶性不同時,m⊕n=mn,在此定義下,集合M={(a,b)|a⊕b=12,a∈N+,b∈N+}中元素的個數是15個.
上述說法正確的是   
【答案】分析:①A=∅,m+2≥2m-1,解得m≤3,因此不正確;
②零向量與任何向量平行,故不正確;
③當n為偶數時,原不等式可化為;
當n為奇數時,原不等式可化為,即可得到實數a的取值范圍;
④當a與b的奇偶性相同時,(a,b)可。1,11),(2,10),…(11,1)共11個;
.當a與b的奇偶性不相同時,(a,b)可。1,12),(12,1),(3,4),(4,3)即可判斷出.
解答:解:①∵集合A=(m+2,2m-1)⊆B=(4,5),∴,解得m∈[2,3];或m+2≥2m-1,解得m≤3,綜上可知:m≤3,故不正確;
②因為零向量與任何向量平行,故不正確;
③當n為偶數時,原不等式可化為,∴a,即a<;
當n為奇數時,原不等式可化為,即,∴a≥-2.
綜上可知:實數a的取值范圍是,因此正確;
④當a與b的奇偶性相同時,(a,b)可。1,11),(2,10),(3,9),(4,8),(5,7),(6,6),(7,5),(8,4),(9,3),(10,2),(11,1)共11個;
.當a與b的奇偶性不相同時,(a,b)可。1,12),(12,1),(3,4),(4,3).
綜上可知:集合M={(a,b)|a⊕b=12,a∈N+,b∈N+}中元素的個數是15個,因此正確.
故正確的答案為③④.
故答案為③④.
點評:熟練掌握集合間的關系、分類討論思想方法、向量共線、新定義的意義等是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

有下列敘述
①集合A=(m+2,2m-1)⊆B=(4,5),則m∈[2,3]
②兩向量平行,那么兩向量的方向一定相同或者相反
③若不等式(-1)na<2+
(-1)n+1
n
對任意正整數n恒成立,則實數a的取值范圍是[-2,
3
2
)

④對于任意兩個正整數m,n,定義某種運算⊕如下:
當m,n奇偶性相同時,m⊕n=m+n;當m,n奇偶性不同時,m⊕n=mn,在此定義下,集合M={(a,b)|a⊕b=12,a∈N+,b∈N+}中元素的個數是15個.
上述說法正確的是
③,④
③,④

查看答案和解析>>

科目:高中數學 來源: 題型:

有下列敘述:
①集合{x∈N|x=
6
a
,a∈N *}
中只有四個元素;
②y=tanx在其定義域內為增函數;
③已知α=-6,則角α的終邊落在第四象限;
④平面上有四個互異的點A、B、C、D,且點A、B、C不共線,已知(
DB
+
DC
-2
DA
)•(
AB
-
AC
)=0
,則△ABC是等腰三角形;
⑤若函數f(x)的定義域為[0,2],則函數f(2x)的定義域為[0,4].
其中所有正確敘述的序號是
①④
①④

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

有下列敘述
①集合A=(m+2,2m-1)⊆B=(4,5),則m∈[2,3]
②兩向量平行,那么兩向量的方向一定相同或者相反
③若不等式(-1)na<2+
(-1)n+1
n
對任意正整數n恒成立,則實數a的取值范圍是[-2,
3
2
)

④對于任意兩個正整數m,n,定義某種運算⊕如下:
當m,n奇偶性相同時,m⊕n=m+n;當m,n奇偶性不同時,m⊕n=mn,在此定義下,集合M={(a,b)|a⊕b=12,a∈N+,b∈N+}中元素的個數是15個.
上述說法正確的是______.

查看答案和解析>>

科目:高中數學 來源: 題型:

有下列敘述

①集合A=(m+2,2m﹣1)⊆B=(4,5),則m∈[2,3]

②兩向量平行,那么兩向量的方向一定相同或者相反

③若不等式對任意正整數n恒成立,則實數a的取值范圍是————————————

④對于任意兩個正整數m,n,定義某種運算⊕如下:

當m,n奇偶性相同時,m⊕n=m+n;當m,n奇偶性不同時,m⊕n=mn,在此定義下,集合M={(a,b)|a⊕b=12,a∈N+,b∈N+}中元素的個數是15個.

上述說法正確的是  

查看答案和解析>>

同步練習冊答案