【題目】已知數(shù)列的首項(xiàng), , ….
(1)證明:數(shù)列是等比數(shù)列;
(2)數(shù)列的前項(xiàng)和.
【答案】(1)證明見(jiàn)解析;(2).
【解析】試題分析:(1)由,可得,即可證明數(shù)列是等比數(shù)列;(2)由由(1)知, ,利用分組求和,再利用錯(cuò)位相減法,即可求出數(shù)列的前項(xiàng)和.
試題解析:(1) , , ,又, , 數(shù)列是以為首項(xiàng), 為公比的等比數(shù)列.
(2)由(1)知,即,
【 方法點(diǎn)睛】本題主要考查根據(jù)遞推公式求數(shù)列的通項(xiàng)以及分組求和、錯(cuò)位相減法求數(shù)列的前 項(xiàng)和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列, 是等比數(shù)列,求數(shù)列的前項(xiàng)和時(shí),可采用“錯(cuò)位相減法”求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解, 在寫(xiě)出“”與“” 的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”以便下一步準(zhǔn)確寫(xiě)出“”的表達(dá)式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)E、F、G分別是正方體ABCD-A1B1C1D1的棱AB、BC、B1C1的中點(diǎn),如圖所示,則下列命題中的真命題是________(寫(xiě)出所有真命題的編號(hào)).
①以正方體的頂點(diǎn)為頂點(diǎn)的三棱錐的四個(gè)面中最多只有三個(gè)面是直角三角形;
②過(guò)點(diǎn)F、D1、G的截面是正方形;
③點(diǎn)P在直線(xiàn)FG上運(yùn)動(dòng)時(shí),總有AP⊥DE;
④點(diǎn)Q在直線(xiàn)BC1上運(yùn)動(dòng)時(shí),三棱錐A-D1QC的體積是定值;
⑤點(diǎn)M是正方體的平面A1B1C1D1內(nèi)的到點(diǎn)D和C1距離相等的點(diǎn),則點(diǎn)M的軌跡是一條線(xiàn)段.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)(p,q),在|p|≤3,|q|≤3中按均勻分布出現(xiàn).試求方程x2+2px﹣q2+1=0有兩個(gè)實(shí)數(shù)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正四面體ABCD的棱長(zhǎng)為2,棱AD與平面α所成的角θ∈[ , ],且頂點(diǎn)A在平面α內(nèi),B,C,D均在平面α外,則棱BC的中點(diǎn)E到平面α的距離的取值范圍是( )
A.[ ,1]
B.[ ,1]
C.[ , ]
D.[ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線(xiàn):,曲線(xiàn):(為參數(shù)), 以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線(xiàn),的極坐標(biāo)方程;
(2)若射線(xiàn):()分別交,于兩點(diǎn), 求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形為菱形,四邊形為平行四邊形,設(shè)與相交于點(diǎn),,,.
(1)證明:平面平面;
(2)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線(xiàn)與直線(xiàn)垂直的切線(xiàn)方程;
(2)求的單調(diào)遞減區(qū)間;
(3)若存在,使函數(shù)成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在上是奇函數(shù).
(1)求;
(2)對(duì),不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)令,若關(guān)于的方程有唯一實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是常數(shù).
(Ⅰ)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(Ⅱ)設(shè),討論函數(shù)的單調(diào)性.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com