已知二次函數(shù)的零點(diǎn)是-1和3,當(dāng)時(shí),,且。(1)求該二次函數(shù)的解析式;(2)求函數(shù)的最大值。
(1);(2)16.
解析試題分析:(1)由題意可設(shè)該二次函數(shù)為 (2分)
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/0/1ar9c3.png" style="vertical-align:middle;" />可得: (4分)
所以 (6分)
(2)由(1)知:設(shè) (8分)
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f6/2/1e8ye3.png" style="vertical-align:middle;" />在上是減函數(shù),所以 (10分)
又有相同的最值,所以的最大值為。 (12分)
考點(diǎn):本題考查函數(shù)零點(diǎn)概念、二次函數(shù)求解析式的方法以及指數(shù)函數(shù)與二次函數(shù)的復(fù)合型函數(shù)的最值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
二次函數(shù).
(1)若對(duì)任意有恒成立,求實(shí)數(shù)的取值范圍;
(2)討論函數(shù)在區(qū)間上的單調(diào)性;
(3)若對(duì)任意的,有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(其中a,b為實(shí)常數(shù))。
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間:
(Ⅱ)當(dāng)時(shí),函數(shù)有三個(gè)不同的零點(diǎn),證明::
(Ⅲ)若在區(qū)間上是減函數(shù),設(shè)關(guān)于x的方程的兩個(gè)非零實(shí)數(shù)根為,。試問是否存在實(shí)數(shù)m,使得對(duì)任意滿足條件的a及t恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
(1)若
(2)若函數(shù)的圖像上有與軸平行的切線,求的取值范圍。
(3)若函數(shù)
求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若非零函數(shù)對(duì)任意實(shí)數(shù)均有,且當(dāng)時(shí), ;
(1)求證: (2)求證:為減函數(shù)
(3)當(dāng)時(shí),解不等式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時(shí)兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元(如圖).
(1)分別寫出兩種產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財(cái)投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè),當(dāng)時(shí),對(duì)應(yīng)值的集合為.
(1)求的值;(2)若,求該函數(shù)的最值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com