求直線m:
x=4+
6
13
t
y=3+
4
13
t
(t為參數(shù))與直線n:x+y-2=0的交點(diǎn)Q的坐標(biāo).
分析:將其直線的方程聯(lián)立得方程組,求出其解即可.
解答:解:由直線m:
x=4+
6
13
t
y=3+
4
13
t
(t為參數(shù))消去參數(shù)t得2x-3y+1=0,
聯(lián)立
2x-3y+1=0
x+y-2=0
解得
x=1
y=1

∴其交點(diǎn)Q(1,1).
點(diǎn)評(píng):充分理解直線的交點(diǎn)與相應(yīng)的直線方程組成的方程組的解得關(guān)系是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知過(guò)點(diǎn)A(-1,0)的動(dòng)直線l與圓C:x2+(y-3)2=4相交于P,Q兩點(diǎn),M是PQ中點(diǎn),l與直線m:x+3y+6=0相交于N.
(1)求證:當(dāng)l與m垂直時(shí),l必過(guò)圓心C;
(2)當(dāng)PQ=2
3
時(shí),求直線l的方程;
(3)探索
AM
AN
是否與直線l的傾斜角有關(guān)?若無(wú)關(guān),請(qǐng)求出其值;若有關(guān),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知定圓C:x2+(y-3)2=4,定直線m:x+3y+6=0,過(guò)A(-1,0)的一條動(dòng)直線l與直線相交于N,與圓C相交于P,Q兩點(diǎn),M是PQ中點(diǎn).
(Ⅰ)當(dāng)l與m垂直時(shí),求證:l過(guò)圓心C;
(Ⅱ)當(dāng)|PQ|=2
3
時(shí),求直線l的方程;
(Ⅲ)設(shè)t=
AM
AN
,試問(wèn)t是否為定值,若為定值,請(qǐng)求出t的值;若不為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知圓C:x2+(y-3)2=4,一動(dòng)直線l過(guò)A(-1,0)與圓C相交于P、Q兩點(diǎn),M是PQ中點(diǎn),l與直線m:x+3y+6=0相交于N.
(Ⅰ)求證:當(dāng)l與m垂直時(shí),l必過(guò)圓心C;
(Ⅱ)當(dāng)PQ=2
3
時(shí),求直線l的方程;
(Ⅲ)探索
AM
AN
是否與直線l的傾斜角有關(guān),若無(wú)關(guān),請(qǐng)求出其值;若有關(guān),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+(y-3)2=4,一動(dòng)直線l過(guò)A(-1,0)與圓C相交于P,Q兩點(diǎn),M是PQ的中點(diǎn),l與直線m:x+3y+6=0相交于N.
(Ⅰ)當(dāng)|PQ|=2
3
時(shí),求直線l的方程;
(Ⅱ)探索
AM
AN
是否與直線l的傾斜角有關(guān),若無(wú)關(guān),請(qǐng)求出其值;若有關(guān),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓C:x2+(y-3)2=4,一動(dòng)直線l過(guò)A(-1,0)與圓C相交于P、Q兩點(diǎn),M是PQ中點(diǎn),l與直線m:x+3y+6=0相交于N.
(Ⅰ)求證:當(dāng)l與m垂直時(shí),l必過(guò)圓心C;
(Ⅱ)當(dāng)數(shù)學(xué)公式時(shí),求直線l的方程;
(Ⅲ)探索數(shù)學(xué)公式是否與直線l的傾斜角有關(guān),若無(wú)關(guān),請(qǐng)求出其值;若有關(guān),請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案