已知某幾何體的直觀圖和三視圖如下圖所示, 其正視圖為矩形,側視圖為等腰直角三角形,俯視圖為直角梯形.

(Ⅰ)證明:BN⊥平面C1B1N;

(Ⅱ)設直線C1N與平面CNB1所成的角為,求sin的值;

(Ⅲ)M為AB中點,在CB上是否存在一點P,使得MP∥平面CNB1,若存在,求出BP的長;若不存在,請說明理由.

(Ⅱ)   (Ⅲ)當BP=1時MP∥平面CNB1


解析:

(Ⅰ)證明∵該幾何體的正視圖為矩形,側視圖為等腰直角三角形,俯視圖為直角梯形,

∴BA,BC,BB1兩兩垂直.

以BA,BC,BB1分別為x,y,z軸建立空間直角坐標系,

則N(4,4,0),B1(0,8,0),C1(0,8,4),C(0,0,4)

=(4,4,0)·(-4,4,0)=-16+16=0

=(4,4,0)·(0,0,4)=0            

∴BN⊥NB1, BN⊥B1C1且NB1與B1C1相交于B1,

∴BN⊥平面C1B1N;                                            ……4分

(Ⅱ)設=(x,y,z)為平面NCB1的一個法向量,

,取=(1,1,2),   

則cosθ=;                            ……9分

(Ⅲ)∵M(2,0,0).設P(0,0,a)為BC上一點,則=(-2,0,a),∵MP∥平面CNB1,

·=(-2,0,a) ·(1,1,2)=-2+2 a =0 a =1.              

又MP平面CNB1, ∴MP∥平面CNB1, ∴當BP=1時MP∥平面CNB1.  …14分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知某幾何體的直觀圖和三視圖如圖所示,其正視圖為矩形,側視圖為等腰直角三角形,俯視圖為直角梯形.
精英家教網(wǎng)精英家教網(wǎng)
(Ⅰ)若M為CB中點,證明:MA∥平面CNB1;
(Ⅱ)求這個幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•鐘祥市模擬)已知某幾何體的直觀圖和三視圖如圖所示,其正視圖為矩形,側視圖為等腰直角三角形,俯視圖為直角梯形.

(1)求證:BN⊥平面C1B1N;
(2)θ 為直線C1N與平面CNB1所成的角,求sinθ 的值;
(3)設M為AB中點,在BC邊上找一點P,使MP∥平面CNB1并求
BPPC
的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某幾何體的直觀圖與它的三視圖,其中俯視圖為正三角形,其它兩個視圖是矩形.已知D是這個幾何體的棱A1C1上的中點.

(Ⅰ)求出該幾何體的體積;
(Ⅱ)求證:直線BC1∥平面AB1D;
(Ⅲ)求證:直線B1D⊥平面AA1D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某幾何體的直觀圖和三視圖如下圖所示,其正視圖為矩形,側視圖為等腰直角三角形,俯視圖為直角梯形
(1)求證:BC∥平面C1B1N;
(2)求證:BN⊥平面C1B1N;
(3)設M為AB中點,在BC邊上找一點P,使MP∥平面CNB1,并求
BPPC
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•樂山一模)已知某幾何體的直觀圖和三視圖如圖所示,其正視圖為矩形,左視圖為等腰直角三角形,俯視圖為直角梯形.
(Ⅰ)證明:BN⊥平面C1NB1
(Ⅱ)求平面CNB1與平面C1NB1所成角的余弦值;

查看答案和解析>>

同步練習冊答案