設(shè)函數(shù).
(1)當(dāng)時,求函數(shù)在區(qū)間內(nèi)的最大值;
(2)當(dāng)時,方程有唯一實數(shù)解,求正數(shù)的值.
(1)詳見解析;(2).
解析試題分析:(1)先求出導(dǎo)數(shù)方程的根,對此根與區(qū)間的位置關(guān)系進(jìn)行分類討論,確定函數(shù)在區(qū)間上的單調(diào)性,從而求出函數(shù)在區(qū)間上的最大值;(2)構(gòu)造函數(shù),
利用導(dǎo)數(shù)求出函數(shù)的極值點,并確定函數(shù)的單調(diào)性,得到,消去并化簡得到,通過構(gòu)造函數(shù)并利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性并結(jié)合,得到,從而求出的值.
(1),,
令得. 因為時,,時,,
所以在遞增,在遞減;
①當(dāng)時,即時,在上遞減,
所以時取最大值;
②當(dāng)時,即時,在遞增,在遞減,
所以時,取最大值;
③當(dāng)即時,在遞增,
所以時取最大值;
(2)因為方程有唯一實數(shù)解,即有唯一實數(shù)解,
設(shè),則,
令,,因為,,
所以(舍去),,
當(dāng)時,,在上單調(diào)遞減,
當(dāng)時,,在上單調(diào)遞增,
所以最小值為,
則
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)(2011•陜西)設(shè)f(x)=lnx,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的單調(diào)區(qū)間和最小值;
(Ⅱ)討論g(x)與的大小關(guān)系;
(Ⅲ)求a的取值范圍,使得g(a)﹣g(x)<對任意x>0成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線滿足下列條件:
①過原點;②在處導(dǎo)數(shù)為-1;③在處切線方程為.
(1) 求實數(shù)的值;
(2)求函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若,求曲線在點處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)設(shè)函數(shù).若至少存在一個,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com