【題目】(題文)已知正方體的棱長為1,每條棱所在直線與平面α所成的角都相等,則α截此正方體所得截面面積的最大值為
A. B. C. D.
科目:高中數(shù)學 來源: 題型:
【題目】平面內(nèi)有12個點,其中任意三點不共線,每兩點連一條線段(或邊)。這些線段用紅、藍兩色染色,每條線段恰染一色,其中,從某點出發(fā)的紅色線段有奇數(shù)條,而從其余11個點出發(fā)的紅色線段數(shù)互不相同。求以已知點為頂點、各邊均為紅色的三角形個數(shù)及兩邊為紅色、另一邊為藍色的三角形個數(shù)。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)有,兩個分廠生產(chǎn)某種產(chǎn)品,規(guī)定該產(chǎn)品的某項質(zhì)量指標值不低于130的為優(yōu)質(zhì)品.分別從,兩廠中各隨機抽取100件產(chǎn)品統(tǒng)計其質(zhì)量指標值,得到如圖頻率分布直方圖:
(1)根據(jù)頻率分布直方圖,分別求出分廠的質(zhì)量指標值的眾數(shù)和中位數(shù)的估計值;
(2)填寫列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認為這兩個分廠的產(chǎn)品質(zhì)量有差異?
優(yōu)質(zhì)品 | 非優(yōu)質(zhì)品 | 合計 | |
合計 |
(3)(i)從分廠所抽取的100件產(chǎn)品中,利用分層抽樣的方法抽取10件產(chǎn)品,再從這10件產(chǎn)品中隨機抽取2件,已知抽到一件產(chǎn)品是優(yōu)質(zhì)品的條件下,求抽取的兩件產(chǎn)品都是優(yōu)質(zhì)品的概率;
(ii)將頻率視為概率,從分廠中隨機抽取10件該產(chǎn)品,記抽到優(yōu)質(zhì)品的件數(shù)為,求的數(shù)學期望.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線:(為參數(shù)),在以原點為極點,軸的正半軸為極軸建立的極坐標系中,直線的極坐標方程為.
(1)求曲線的普通方程和直線的直角坐標方程;
(2)過點且與直線平行的直線交于,兩點,求點到,兩點的距離之積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,點在橢圓上.
(1)求橢圓的方程;
(2)若不過原點的直線與橢圓相交于,兩點,與直線相交于點,且是線段的中點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4—4:坐標系與參數(shù)方程]
在直角坐標系中,曲線的方程為.以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求的直角坐標方程;
(2)若與有且僅有三個公共點,求的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近日,據(jù)媒體報道稱,“雜交水稻之父”袁隆平及其團隊培育的超級雜交稻品種“湘兩優(yōu)900(超優(yōu)千號)”再創(chuàng)畝產(chǎn)世界紀錄,經(jīng)第三方專家測產(chǎn),該品種的水稻在實驗田內(nèi)畝產(chǎn)1203.36公斤.中國工程院院士袁隆平在1973年率領(lǐng)科研團隊開啟了的雜交水稻王國的大門,在數(shù)年的時間內(nèi)就解決了十多億人的吃飯問題,有力回答了世界“誰來養(yǎng)活中國”的疑問.2012年,在袁隆平的實驗田內(nèi)種植了,兩個品種的水稻,為了篩選出更優(yōu)的品種,在,兩個品種的實驗田中分別抽取7塊實驗田,如圖所示的莖葉圖記錄了這14塊實驗田的畝產(chǎn)量(單位:),通過莖葉圖比較兩個品種的均值及方差,并從中挑選一個品種進行以后的推廣,有如下結(jié)論:①.品種水稻的平均產(chǎn)量高于品種水稻,推廣品種水稻;②.品種水稻的平均產(chǎn)量高于品種水稻,推廣品種水稻;③.品種水稻的比品種水稻產(chǎn)量更穩(wěn)定,推廣品種水稻;④.品種水稻的比品種水稻產(chǎn)量更穩(wěn)定,推廣品種水稻;
其中正確結(jié)論的編號為( )
A. ①② B. ①③ C. ②④ D. ①④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.
(1)證明:平面PQC⊥平面DCQ;
(2)求直線DQ與面PQC成角的正弦值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】天氣預報,在元旦期間甲、乙兩地都降雨的概率為,至少有一個地方降雨的概率為,已知甲地降雨的概率大于乙地降雨的概率,且在這段時間甲、乙兩地降雨互不影響.
(1)分別求甲、乙兩地降雨的概率;
(2)在甲、乙兩地3天假期中,僅有一地降雨的天數(shù)為,求的分布列和數(shù)學期望與方差.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com