3.設(shè)全集U=R,若集合A={x∈N||x-2|<3},B={x|y=lg(9-x2)},則A∩∁RB( 。
A.{x|-1<x<3}B.{x|3≤x<5}C.{0,1,2}D.{3,4}

分析 確定集合A,B,求出∁RB,再根據(jù)集合的基本運(yùn)算即可求A∩∁RB

解答 解:由題意:全集U=R,集合A={x∈N||x-2|<3}={0,1,2,3,4},
B={x|y=lg(9-x2)}={x|-3<x<3},
則∁RB={x|x≥3或x≤-3},
那么:A∩∁RB={3,4}
故選D

點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知點(diǎn)P(x0,y0)是拋物線y=3x2上一點(diǎn),且y′|${\;}_{x={x}_{0}}$=6,則點(diǎn)P的坐標(biāo)為(  )
A.(1,3)B.(-1,3)C.(3,1)D.(-3,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}-2(x≥2)\\ 2x(x<2)\end{array}\right.$,若f(a)>a,則實(shí)數(shù)a的取值范圍是a>2或0<a<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=4sin$\frac{x}{2}$sin($\frac{x}{2}$+$\frac{π}{6}$)+2$\sqrt{3}$(cosx-1).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在區(qū)間[0,$\frac{2π}{3}$]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在等比數(shù)列{an}中a1=512,公比q=-$\frac{1}{2}$,記Πn=a1×a2×…×an.(即Πn表示數(shù)列{an}的前n項(xiàng)之積),Π8,Π9,Π10,Π11中值為正數(shù)的個(gè)數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知在△ABC中,B、C坐標(biāo)分別為B (0,-4),C (0,4),且|AB|+|AC|=12,頂點(diǎn)A的軌跡方程是(  )
A.$\frac{x^2}{36}$+$\frac{y^2}{20}$=1(x≠0)B.$\frac{x^2}{20}$+$\frac{y^2}{36}$=1(x≠0)
C.$\frac{x^2}{6}$+$\frac{y^2}{20}$=1(x≠0)D.$\frac{x^2}{20}$+$\frac{y^2}{6}$=1(x≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)A(x1,y1),B(x2,y2)是拋物線y2=2px(p>0)上的不同兩點(diǎn),則“y1y2=-p2”是“弦AB過焦點(diǎn)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.不充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知關(guān)于x的方程2x2-($\sqrt{3}$+1)x+m=0的兩根為sin θ、cos θ,θ∈(0,2π),求:
(1)$\frac{sin^2θ}{sinθ-cosθ}$+$\frac{cos^2θ}{cosθ-sinθ}$的值;
(2)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若以連續(xù)兩次骰子分別得到的點(diǎn)數(shù)m,n作為點(diǎn)P的橫、縱坐標(biāo),則點(diǎn)P在直線x+y=5左下方的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{12}$D.$\frac{1}{9}$

查看答案和解析>>

同步練習(xí)冊(cè)答案