【題目】如圖放置的邊長為2的正三角形ABC沿x軸滾動(dòng),記滾動(dòng)過程中頂點(diǎn)A的橫、縱坐標(biāo)分別為和,且是在映射作用下的象,則下列說法中:
① 映射的值域是;
② 映射不是一個(gè)函數(shù);
③ 映射是函數(shù),且是偶函數(shù);
④ 映射是函數(shù),且單增區(qū)間為,
其中正確說法的序號(hào)是___________.
說明:“正三角形ABC沿x軸滾動(dòng)”包括沿x軸正方向和沿x軸負(fù)方向滾動(dòng).沿x軸正方向滾動(dòng)指的是先以頂點(diǎn)B為中心順時(shí)針旋轉(zhuǎn),當(dāng)頂點(diǎn)C落在x軸上時(shí),再以頂點(diǎn)C為中心順時(shí)針旋轉(zhuǎn),如此繼續(xù).類似地,正三角形ABC可以沿x軸負(fù)方向滾動(dòng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秦九韶是我國南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入x的值為2,則輸出v的值為( )
A.210﹣1
B.210
C.310﹣1
D.310
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
(1)當(dāng)a≥1時(shí),求f(x)在[0,e](e為自然對數(shù)的底數(shù))上的最大值;
(2)對任意的正實(shí)數(shù)a,問:曲線y=f(x)上是否存在兩點(diǎn)P,Q,使得△POQ(O為坐標(biāo)原點(diǎn))是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且對任意正整數(shù)n,都有an= +2成立.
(1)記bn=log2an , 求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)利用周末組織教職員工進(jìn)行了一次秋季登山健身的活動(dòng),有N人參加,現(xiàn)將所有參加者按年齡情況分為[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55)等七組,其頻率分布直方圖如下所示.已知[35,40)這組的參加者是8人.
(1)求N和[30,35)這組的參加者人數(shù)N1;
(2)已知[30,35)和[35,40)這兩組各有2名數(shù)學(xué)教師,現(xiàn)從這兩個(gè)組中各選取2人擔(dān)任接待工作,設(shè)兩組的選擇互不影響,求兩組選出的人中都至少有1名數(shù)學(xué)老師的概率;
(3)組織者從[45,55)這組的參加者(其中共有4名女教師,其余全為男教師)中隨機(jī)選取3名擔(dān)任后勤保障工作,其中女教師的人數(shù)為x,求x的分布列和均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,以橢圓長、短軸四個(gè)端點(diǎn)為頂點(diǎn)為四邊形的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖所示,記橢圓的左、右頂點(diǎn)分別為、,當(dāng)動(dòng)點(diǎn)在定直線上運(yùn)動(dòng)時(shí),直線分別交橢圓于兩點(diǎn)、,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)滿足,當(dāng)時(shí)總有 ,若,則實(shí)數(shù)的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 分別是橢圓的左、右焦點(diǎn),焦距為,動(dòng)弦平行于軸,且.
(1)求橢圓的方程;
(2)過分別作直線交橢圓于和,且,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是滿足下列性質(zhì)的所有函數(shù)組成的集合:對任何(其中為函數(shù)的定義域),均有成立.
(1)已知函數(shù),,判斷與集合的關(guān)系,并說明理由;
(2)是否存在實(shí)數(shù),使得,屬于集合?若存在,求的取值范圍,若不存在,請說明理由;
(3)對于實(shí)數(shù)、 ,用表示集合中定義域?yàn)閰^(qū)間的函數(shù)的集合.
定義:已知是定義在上的函數(shù),如果存在常數(shù),對區(qū)間的任意劃分:,和式恒成立,則稱為上的“絕對差有界函數(shù)”,其中常數(shù)稱為的“絕對差上界”,的最小值稱為的“絕對差上確界”,符號(hào);求證:集合中的函數(shù)是“絕對差有界函數(shù)”,并求的“絕對差上確界”.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com