分析 (Ⅰ)利用垂直平分線的性質可得|QA|=|QP|,由|QB|+|QP|=4,可得|QB|+|QA|=4,利用橢圓的定義可得點Q的軌跡是一個橢圓;
(Ⅱ)設l:y=kx+m代入橢圓、拋物線的方程,利用判別式等于0,A與P關于直線l對稱,即可求點P的坐標.
解答 解:(Ⅰ)由條件知:|QA|=|QP|,
∵|QB|+|QP|=4,
∴|QB|+|QA|=4,
∵|AB|=2<4,
所以點Q的軌跡是以B,A為焦點的橢圓,
∵2a=4,2c=2,∴b2=3,
∴曲線E的方程是$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1;
(Ⅱ)由題意,設l:y=kx+m①,代入$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1得(4k2+3)x2+8kmx+4(m2-3)=0,
∴△1=(8km)-4(4k2+3)×4(m2-3)=0,
∴4k2-m2+3=0②
把①代入:y=-$\frac{1}{32}$x2,得:$\frac{1}{32}$x2+kx+m=0,
由△2=${k}^{2}-4×\frac{1}{32}×m$=0,得m=8k2③>
由②③解得k=±$\frac{1}{2}$,m=2.
設P(x0,y0),則x0<0,y0>0
∵A與P關于直線l對稱,kAP<0,
∴k>0,∴k=$\frac{1}{2}$,
∴l(xiāng):y=$\frac{1}{2}$x+2,則$\left\{\begin{array}{l}{\frac{{y}_{0}}{2}=\frac{1}{2}×\frac{{x}_{0}+1}{2}+2}\\{\frac{{y}_{0}}{{x}_{0}-1}×\frac{1}{2}=-1}\end{array}\right.$,∴x0=-1,y0=4,
經檢驗P(-1,4)在圓C上.
故所求點P的坐標為P(-1,4).
點評 本題綜合考查了圓與橢圓的定義及其標準方程、線段的垂直平分線、直線與橢圓、拋物線相切等基礎知識與基本技能,考查了數形結合的能力、推理能力、計算能力.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
合格品數 | 次品數 | 總數 | |
第一臺加工數 | 45 | 10 | 55 |
第二臺加工數 | 40 | 5 | 45 |
總計 | 85 | 15 | 100 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (1002×2015)2 | B. | (1008×2015)2 | C. | (2014×2015)2 | D. | (2016×2015)2 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com