分析 (1)求一元二次函數(shù)的最大值與最小值首要判斷對(duì)稱軸是否在給定區(qū)間內(nèi);
(2)需要分類討論對(duì)稱軸是否在給定區(qū)間內(nèi),然后分別求出在各個(gè)區(qū)間內(nèi)的最大值與最小值;
解答 解:(1)當(dāng)a=1時(shí),f(x)=x2-2x+3;
f(x)的對(duì)稱軸為:x=1;
對(duì)稱軸x=1在區(qū)間[-2,2]內(nèi),
故 f(x)的最小值為f(1)=2,最大值為f(-2)=11.
(2)f(x)的對(duì)稱軸為:x=a;
當(dāng)a≥2時(shí),f(x)在[-2,2]上為減函數(shù)
∴M=f(-2)=7+4a,m=7-4a;
∴g(a)=8a
當(dāng)a≤-2時(shí),f(x)在[-2,2]上為增函數(shù)
∴M=f(1)=7-4a,m=f(2)=7+4a
∴g(a)=M-m=-8a
當(dāng)-2<a≤0時(shí),M=f(2)=7-4a,m=f(a)=a2-2a2+3=-a2+3
∴g(a)=M-m=a2-4a+4;
當(dāng)0<a<2時(shí),M=f(-2)=7+4a,m=f(a)=-a2+3
∴g(a)=M-m=a2+4a+4;
所以,g(a)=$\left\{\begin{array}{l}{-8a,a≤2}\\{{a}^{2}-4a+4,-2<a≤0}\\{{a}^{2}+4a+4,0<a<2}\\{8a,a≥2}\end{array}\right.$
∴g(a)的最小值為4.
點(diǎn)評(píng) 本題主要考查了一元二次函數(shù)在給定區(qū)間的最大值與最小值問題,屬常規(guī)題型,考生應(yīng)熟練掌握.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\sqrt{3}$ | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com