5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-ax+4,x<1}\\{1+\frac{1}{2x},x≥1}\end{array}\right.$在R上單調(diào),則實數(shù)a的取值范圍為( 。
A.(-∞,2]B.[2,+∞)C.[2,$\frac{7}{2}$]D.[$\frac{7}{2}$,+∞)

分析 由于函數(shù)f(x在定義域R上單調(diào),可得函數(shù)在R上單調(diào)遞減,列出不等式,即可求出實數(shù)a的取值范圍.

解答 解:由于函數(shù)f(x)在定義域R上單調(diào),y=1+$\frac{1}{2x}$,x≥1是減函數(shù),可得函數(shù)在R上單調(diào)遞減,
故有$\left\{\begin{array}{l}{\frac{a}{2}≥1}\\{1-a+4≥1+\frac{1}{2}}\end{array}\right.$,解得2≤a≤$\frac{7}{2}$,
故選:C.

點評 本題考查分段函數(shù)的單調(diào)性,考查學生分析解決問題的能力,正確轉(zhuǎn)化是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知f(x)═ax-$\frac{a}{x}$-51nx,g(x)=x2-mx+4
(1)若x=2是函數(shù)f(x)的極值點,求a的值;
(2)當a=2時,若?x1∈(0,1),?x2∈[1,2]都有f(x1)≥g(x2)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.將函數(shù)f(x)=sinωx的圖象向右平移$\frac{π}{4}$個單位長度,所得圖象與g(x)=cosωx的圖象重合,則正數(shù)ω的最小值是6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在正三棱錐S-ABC中,M是SC的中點,且AM⊥SB,底面邊長AB=2$\sqrt{2}$,則正三棱錐S-ABC的外接球的體積為( 。
A.$\sqrt{6}π$B.$4\sqrt{3}π$C.$4\sqrt{2}π$D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)f(x)=x3-3x,在△ABC中,C為鈍角,則( 。
A.f(sinA)<f(sinB)B.f(cosA)>f(cosB)C.f(sinA)<f(cosB)D.f(sinA)>f(cosB)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知拋物線C頂點在坐標原點,準線垂直于x軸,且過點M(2,2),A,B是拋物線C上兩點,滿足MA⊥MB,
(1)求拋物線C方程;
(2)證明直線AB過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知復(fù)數(shù)z=-2i+$\frac{1+4i}{i}$,則復(fù)數(shù)z的模為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=ax5+bx3-x+2(a,b為常數(shù)),且f(-2)=5,則f(2)=(  )
A.-1B.-5C.1D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.今年入秋以來,某市多有霧霾天氣,空氣污染較為嚴重.市環(huán)保研究所對近期每天的空氣污染情況進行調(diào)査研究后發(fā)現(xiàn),每一天中空氣污染指數(shù)與f(x)時刻x(時)的函數(shù)關(guān)系為f(x)=|log25(x+1)-a|+2a+1,x∈[0,24],其中a為空氣治理調(diào)節(jié)參數(shù),且a∈(0,1).
(1)若a=$\frac{1}{2}$,求一天中哪個時刻該市的空氣污染指數(shù)最低;
(2)規(guī)定每天中f(x)的最大值作為當天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過3,則調(diào)節(jié)參數(shù)a應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

同步練習冊答案