函數(shù)y=log2(x2-2x-3)的定義域?yàn)開_______.
(3,+∝)∪(-∝,-1)
分析:根據(jù)對數(shù)的定義得到負(fù)數(shù)和0沒有對數(shù)得到一個一元二次不等式,求出解集即可得到函數(shù)的定義域.
解答:由題意得:x2-2x-3>0即(x-3)(x+1)>0
∴x>3或x<-1
∴函數(shù)y=log2(x2-2x-3)的定義域?yàn)椋?,+∞)∪(-∞,-1)
故答案為(3,+∞)∪(-∞,-1)
點(diǎn)評:本題考查對數(shù)函數(shù)的定義域,考查學(xué)生發(fā)現(xiàn)問題解決問題的能力,是基礎(chǔ)題.
科目:高中數(shù)學(xué)
來源:
題型:
函數(shù)
y=log2(1+x)+的定義域?yàn)椋ā 。?/div>
A、(0,2) |
B、(-1,2] |
C、(-1,2) |
D、[0,2] |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
下列命題:
①函數(shù)
y=-在其定義域上是增函數(shù);
②函數(shù)
y=是偶函數(shù);
③函數(shù)y=log
2(x-1)的圖象可由y=log
2(x+1)的圖象向右平移2個單位得到;
④若2
a=3
b<1,則a<b<0;
則上述正確命題的序號是
③④
③④
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
為了得到函數(shù)y=log2(x+2)的圖象,只需把函數(shù)y=log2(x-1)的圖象向( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
函數(shù)y=log
2(x+1)+1(x>0)的反函數(shù)是
y=2x-1-1(x>1)
y=2x-1-1(x>1)
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
函數(shù)y=log
2(x+1)的圖象與y=f(x)的圖象關(guān)于直線x=1對稱,則f(x)的表達(dá)式是
y=log2(3-x)(x<3)
y=log2(3-x)(x<3)
.
查看答案和解析>>