【題目】函數(shù),
(1)若,試討論函數(shù)的單調(diào)性;
(2)若,試討論的零點的個數(shù);
【答案】(1)在和上為增函數(shù),在上為減函數(shù);(2)當(dāng)時,函數(shù)有且僅有一個零點;
當(dāng)或或或時,函數(shù)有兩個零點;
當(dāng)或時,有三個零點.
【解析】
試題把代入函數(shù),根據(jù)絕對值不等式的幾何意義去掉絕對值的符號,根據(jù)函數(shù)的解析式作出函數(shù)的圖象,根據(jù)函數(shù)圖象討論函數(shù)的單調(diào)性;(2)把函數(shù)的零點轉(zhuǎn)化為方程的根,作圖和的圖象,直線移動過程中注意在什么范圍內(nèi)有一個零點,在什么范圍內(nèi)有兩個零點,三個零點,通過數(shù)形結(jié)合解決有關(guān)問題.
試題解析:(1)
圖像如下:
所以在和上為增函數(shù),在上為減函數(shù);
(2)的零點,除了零點以外的零點
即方程的根
作圖和,如圖可知:
當(dāng)直線的斜率:
當(dāng)時有一根;
當(dāng)時有兩根;
當(dāng)時,有一根;
當(dāng)時,有一根;
當(dāng)(當(dāng)和相切時)沒有實數(shù)根;
當(dāng)(當(dāng)和相切時)有一根;
當(dāng)時有兩根.
綜上所述:
當(dāng)時,函數(shù)有且僅有一個零點;
當(dāng)或或或時,函數(shù)有兩個零點;
當(dāng)或時,有三個零點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)欲建兩條圓形觀景步道(寬度忽略不計),如圖所示,已知,(單位:米),要求圓M與分別相切于點B,D,圓與分別相切于點C,D.
(1)若,求圓的半徑;(結(jié)果精確到0.1米)
(2)若觀景步道的造價分別為每米0.8千元與每米0.9千元,則當(dāng)多大時,總造價最低?最低總造價是多少?(結(jié)果分別精確到0.1°和0.1千元)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若數(shù)列滿足,存在實數(shù),對任意,都有,則稱數(shù)列有上界,是數(shù)列的一個上界,已知定理:單調(diào)遞增有上界的數(shù)列收斂(即極限存在).
(1)數(shù)列是否存在上界?若存在,試求其所有上界中的最小值;若不存在,請說明理由;
(2)若非負數(shù)列滿足,(),求證:1是非負數(shù)列的一個上界,且數(shù)列的極限存在,并求其極限;
(3)若正項遞增數(shù)列無上界,證明:存在,當(dāng)時,恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果存在常數(shù)a,使得數(shù)列{an}滿足:若x是數(shù)列{an}中的一項,則a-x也是數(shù)列{an}中的一項,稱數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:2,3,6,m(m>6)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)已知有窮等差數(shù)列{bn}的項數(shù)是n0(n0≥3),所有項之和是B,求證:數(shù)列{bn}是“兌換數(shù)列”,并用n0和B表示它的“兌換系數(shù)”;
(3)對于一個不少于3項,且各項皆為正整數(shù)的遞增數(shù)列{cn},是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一點,且CD⊥平面PAB.
(1)求證:AB⊥平面PCB;
(2)求二面角C﹣PA﹣B的大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若滿足為上奇函數(shù)且為上偶函數(shù),求的值;
(2)若函數(shù)滿足對恒成立,函數(shù),求證:函數(shù)是周期函數(shù),并寫出的一個正周期;
(3)對于函數(shù),,若對恒成立,則稱函數(shù)是“廣義周期函數(shù)”, 是其一個廣義周期,若二次函數(shù)的廣義周期為(不恒成立),試利用廣義周期函數(shù)定義證明:對任意的,,成立的充要條件是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)的零點個數(shù);
(3)當(dāng)時,求證不等式解集為空集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com