【題目】已知F1 , F2是橢圓C: + =1的左、右焦點(diǎn).
(1)若點(diǎn)M在橢圓C上,且∠F1MF2=60°,求△F1MF2的面積;
(2)動(dòng)直線y=k(x+1)與橢圓C相交于A,B兩點(diǎn),點(diǎn)T(t,0),問(wèn)是否存在t∈R,使得 為定值,若存在求出t的值,若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)解:∵a2=5,b2= ,c2=a2﹣b2= ,
設(shè)丨PF1丨=m,丨PF2丨=n,
∵ ,解得:mn= ,
∴△F1MF2的面積S,S= mnsin60°=
(2)解:設(shè)A(x1,y1),B(x2,y2),
∴ ,化簡(jiǎn)得:(3k2+1)x2+6k2x+3k2﹣5=0
由韋達(dá)定理可知:x1+x2= ,x1x2= ,
由直線恒過(guò)橢圓內(nèi)一點(diǎn)(﹣1,0),則定有兩個(gè)交點(diǎn),
∵ =(x1﹣t,y1), =(x2﹣t,y2),
∴ =(x1﹣t,y1)(x2﹣t,y2)=x1x2﹣t(x1+x2)+t2+y1y2,
=x1x2﹣t(x1+x2)+t2+k2[x1x2+(x1+x2)+1],
= ,
令 =3,解得:t=﹣ ,
故存在,t=﹣
【解析】(1)由題意可知,求得a,b和c的值,設(shè)丨PF1丨=m,丨PF2丨=n,根據(jù)橢圓的定義即可求得mn= ,由三角形的面積公式,即可求得S= mnsin60°= ;(2)將直線方程代入橢圓方程,由韋達(dá)定理求得x1+x2 , x1x2 , =(x1﹣t,y1), =(x2﹣t,y2),根據(jù)向量數(shù)量積的坐標(biāo)表示, =(x1﹣t,y1)(x2﹣t,y2)=x1x2﹣t(x1+x2)+t2+y1y2 , =3,即可求得t=﹣ ,故存在在t∈R,使得 為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)人有n把鑰匙,其中只有一把可以打開(kāi)房門(mén),他隨意的進(jìn)行試開(kāi),若試開(kāi)過(guò)的鑰匙放在一邊,試開(kāi)次數(shù)X為隨機(jī)變量,則P(X=k)=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x∈R).
(1)證明:當(dāng)a>3時(shí),f(x)在R上是減函數(shù);
(2)若函數(shù)f(x)存在兩個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若為奇函數(shù),求的值;
(2)試判斷在內(nèi)的單調(diào)性,并用定義證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)解析式;
(2)判斷函數(shù)的奇偶性(給出結(jié)論即可);
(3)若方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=AD=2,BC=1,CD= .
(1)求證:平面PQB⊥平面PAD;
(2)若PM=3MC,求二面角M﹣BQ﹣C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.向量與平行.
(1)求A;
(2)若,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣4x+a+3,a∈R. (Ⅰ)若函數(shù)y=f(x)的圖象與x軸無(wú)交點(diǎn),求a的取值范圍;
(Ⅱ)若函數(shù)y=f(x)在[﹣1,1]上存在零點(diǎn),求a的取值范圍;
(Ⅲ)設(shè)函數(shù)g(x)=bx+5﹣2b,b∈R.當(dāng)a=0時(shí),若對(duì)任意的x1∈[1,4],總存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,點(diǎn)坐標(biāo)是,曲線的方程為;以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,斜率是的直線經(jīng)過(guò)點(diǎn).
(1)寫(xiě)出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;
(2)求證直線和曲線相交于兩點(diǎn)、,并求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com