1.如圖.在正方體ABCD-A1B1C1D1中,P為棱BB1的中點(diǎn),判斷平面D1PC與平面ABCD是否相交.如果相交,作出這兩個平面的交線.

分析 平面D1PC與平面ABCD是否相交;連接A1B,過點(diǎn)P作PQ∥A1B,交A1B1于點(diǎn)Q,延長QP,交AB的延長線于點(diǎn)M,連接MC,即得兩平面的交線.

解答 解:平面D1PC與平面ABCD是否相交;
正方體ABCD-A1B1C1D1中,P為棱BB1的中點(diǎn),
連接A1B,過點(diǎn)P作PQ∥A1B,交A1B1于點(diǎn)Q,
延長QP,交AB的延長線于點(diǎn)M,
連接MC,則MC是平面D1PC與平面ABCD的交線,如圖所示.

點(diǎn)評 本題考查了平面的基本性質(zhì)與應(yīng)用問題,也考查了識圖與作圖能力的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.若a=2,c=2$\sqrt{3}$,cosA=$\frac{\sqrt{3}}{2}$,則b=2或4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若x,y滿足x2-2xy+3y2=4,則$\frac{1}{{x}^{2}+{y}^{2}}$最大值與最小值的和是( 。
A.$\frac{1}{2}$B.1C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.己知a是正實(shí)數(shù),函數(shù)y=f(x)=2ax2+2x-3-a在區(qū)間[-1,1]上有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=(a-1)xa(a∈R),g(x)=|lgx|.
(Ⅰ)若f(x)是冪函數(shù),求a的值并求其單調(diào)遞減區(qū)間;
(Ⅱ)關(guān)于x的方程g(x-1)+f(1)=0在區(qū)間(1,3)上有兩不同實(shí)根x1,x2(x1<x2),求a+$\frac{1}{x_1}$+$\frac{1}{x_2}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{a}$,$\overrightarrow$是夾角為60°的兩個單位向量,$\overrightarrow{c}$=$\overrightarrow{a}$$+λ\overrightarrow$,且$\overrightarrow{c}$$⊥\overrightarrow$.
(1)求實(shí)數(shù)λ的值;
(2)求向量$\overrightarrow{c}$的模|$\overrightarrow{c}$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在平面直角坐標(biāo)系xOy中,已知圓C:(x-3)2+(y-4)2=5,A、B是圓C上的兩個動點(diǎn),AB=2,則$\overrightarrow{OA}$$•\overrightarrow{OB}$的取值范圍為[8-4$\sqrt{5}$,8+4$\sqrt{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.計算下列函數(shù)的導(dǎo)數(shù):
(1)y=$\frac{lnx}{x}$+sinx
(2)y=x2+$\sqrt{x}$-ex•cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\sqrt{2}$sin(2x-$\frac{π}{6}$),當(dāng)x∈[0,$\frac{π}{2}}$]時,f(x)的最大值、最小值分別為( 。
A.$\sqrt{2}$、-$\frac{{\sqrt{2}}}{2}$B.1、-$\frac{1}{2}$C.1、-$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$、$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案