(2)若過點作曲線E的互相垂直的弦PQ和MN,求四邊形PMQN面積的最大值和此時弦所在的直線方程.

 

 

【答案】

 

x

極小值

   

   

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知定點O(0,0),A(3,0),動點P到定點O距離與到定點A的距離的比值是
1
λ

(Ⅰ)求動點P的軌跡方程,并說明方程表示的曲線;
(Ⅱ)當λ=4時,記動點P的軌跡為曲線D.
①若M是圓E:(x-2)2+(y-4)2=64上任意一點,過M作曲線D的切線,切點是N,求|MN|的取值范圍;
②已知F,G是曲線D上不同的兩點,對于定點Q(-3,0),有|QF|•|QG|=4.試問無論F,G兩點的位置怎樣,直線FG能恒和一個定圓相切嗎?若能,求出這個定圓的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C的方程為x2+y2=4,動點P滿足:過點P作直線與圓C相交所得的所有弦中,弦長最小的為2,記所有滿足條件的點P形成的幾何圖形為曲線M.
(1)寫出曲線M所對應的方程;(不需要解答過程)
(2)過點S(0,2)的直線l與圓C交于A,B兩點,與曲線M交于E,F(xiàn)兩點,若AB=2EF,求直線l的方程;
(3)設(shè)點T(x0,y0).
①當y0=0時,若過點T存在一對互相垂直的直線同時與圓C有兩個公共點,求實數(shù)x0的取值范圍;
②若過點T存在一對互相垂直的直線同時與圓C有兩個公共點,試探求實數(shù)x0,y0應滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•青島一模)已知橢圓9x2+2y2=18上任意一點P,由P向x軸作垂線段PQ,垂足為Q,點M在線段PQ上,且
PM
=2
MQ
,點M的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)若過定點F(0,2)的直線l交曲線E于不同的兩點G,H(點G在點F,H之間),且滿足
FG
=
1
2
FH
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定點O(0,0),A(3,0),動點P到定點O距離與到定點A的距離的比值是
12

(1)記動點P的軌跡為曲線D.求曲線D的方程,并說明方程表示的曲線;
(2)若M是圓E:(x-2)2+(y-4)2=64上任意一點,過M作曲線D的切線,切點是N,求|MN|的取值范圍.

查看答案和解析>>

同步練習冊答案