【題目】某沿海城市的海邊有兩條相互垂直的直線型公路l1、l2,海岸邊界MPN近似地看成一條曲線段.為開(kāi)發(fā)旅游資源,需修建一條連接兩條公路的直線型觀光大道AB,且直線AB與曲線MPN有且僅有一個(gè)公共點(diǎn)P(即直線與曲線相切),如圖所示.若曲線段MPN是函數(shù)圖象的一段,點(diǎn)M到l1、l2的距離分別為8千米和1千米,點(diǎn)N到l2的距離為10千米,以l1、l2分別為x、y軸建立如圖所示的平面直角坐標(biāo)系xOy,設(shè)點(diǎn)P的橫坐標(biāo)為p.
(1)求曲線段MPN的函數(shù)關(guān)系式,并指出其定義域;
(2)若某人從點(diǎn)O沿公路至點(diǎn)P觀景,要使得沿折線OAP比沿折線OBP的路程更近,求p的取值范圍.
【答案】(1)見(jiàn)解析; (2)見(jiàn)解析.
【解析】
(1)由題意得M(1,8),則a=8,即得曲線段的函數(shù)關(guān)系式,可得其定義域;
(2)由函數(shù)關(guān)系式設(shè)點(diǎn)P坐標(biāo),設(shè)直線AB方程,將直線方程與曲線方程聯(lián)立求出A,B坐標(biāo),即可求出最短長(zhǎng)度p的取值范圍
(1)由題意得M(1,8),則a=8,故曲線段MPN的函數(shù)關(guān)系式為,
又得,所以定義域?yàn)閇1,10].
(2),設(shè)AB:
由得kpx2+(8﹣kp2)x﹣8p=0,
△=(8﹣kp2)2+32kp2=(kp2+8)2=0,
∴kp2+8=0,∴,得直線AB方程為,
得,B(2p,0),故點(diǎn)P為AB線段的中點(diǎn),
由即p2﹣8>0,
得時(shí),OA<OB,
所以,當(dāng)時(shí),經(jīng)點(diǎn)A至P路程最近.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)的直線與中心在原點(diǎn),焦點(diǎn)在軸上且離心率為的橢圓相交于、兩點(diǎn),直線過(guò)線段的中點(diǎn),同時(shí)橢圓上存在一點(diǎn)與右焦點(diǎn)關(guān)于直線對(duì)稱.
(1)求直線的方程;
(2)求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P一ABCD中,AB=AD=2BC=2,BC∥AD,AB⊥AD,△PBD為正三角形.且PA=2.
(1)證明:平面PAB⊥平面PBC;
(2)若點(diǎn)P到底面ABCD的距離為2,E是線段PD上一點(diǎn),且PB∥平面ACE,求四面體A-CDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】考慮某長(zhǎng)方體的三個(gè)兩兩相鄰的面上的三條對(duì)角線及體對(duì)角線(共四條線段),則正確的命題是( )
A. 必有某三條線段不能組成一個(gè)三角形的三邊
B. 任何三條線段都可組成三角形,其每個(gè)內(nèi)角都是銳角
C. 任何三條線段都可組成三角形,其中必有一個(gè)是鈍角三角形
D. 任何三條線段都可組成三角形,其形狀是“銳角的”或是“非銳角的”,隨長(zhǎng)方體的長(zhǎng)、寬、高而變化,不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次不等式ax2+2x+b>0的解集為{x|x≠c},則(其中a+c≠0)的取值范圍為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為,過(guò)點(diǎn)的直線與圓交于兩點(diǎn),.
(1)若,求直線的方程;
(2)若直線與軸交于點(diǎn),設(shè),,,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,底面是平行四邊形,為的兩個(gè)三等分點(diǎn).
(1)求證平面;
(2)若平面平面,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)P是直線2x+y+10=0上的動(dòng)點(diǎn),直線PA、PB分別與圓x2+y2=4相切于A、B兩點(diǎn),則四邊形PAOB(O為坐標(biāo)原點(diǎn))面積的最小值為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com