【題目】已知橢圓C: =1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 離心率為 .以原點(diǎn)為圓心,橢圓的短軸長為直徑的圓與直線x﹣y+ =0相切.
(1)求橢圓C的方程;
(2)如圖,若斜率為k(k≠0)的直線l與x軸、橢圓C順次相交于A,M,N(A點(diǎn)在橢圓右頂點(diǎn)的右側(cè)),且∠NF2F1=∠MF2A.求證直線l恒過定點(diǎn),并求出斜率k的取值范圍.
【答案】
(1)解:由橢圓C: =1(a>b>0)可知焦點(diǎn)在x軸上,
離心率e= = ,
∴e2= = = ,即a2=2b2.
∵以原點(diǎn)為圓心,橢圓的短軸長為直徑的圓與直線x﹣y+ =0相切,
∴原點(diǎn)到直線x﹣y+ =0的距離為b,
b= = =1,
∴b2=1,a2=2,
∴橢圓方程為 +y2=1
(2)解:由題意,設(shè)直線l的方程為y=kx+m(k≠0),M(x1,y1),N(x2,y2).
由 ,整理得:(2k2+1)x2+4kmx+2m2﹣2=0.
由△=16k2m2﹣4(2k2+1)(2m2﹣2)>0,得m2<2k2+1,
由韋達(dá)定理可知:x1+x2=﹣ ,x1x2= .
∵∠NF2F1=∠MF2A,且∠MF2A≠90°, + =0.
又F2(1,0),
則 + =0,即 + =0,
化簡得:2kx1x2+(m﹣k)(x1+x2)﹣2m=0.
將x1+x2=﹣ ,x1x2= ,代入上式,求得m=﹣2k,
∴直線l的方程為y=kx﹣2k=k(x﹣2),
∴直線過定點(diǎn)(2,0).
將m=﹣2k代入m2<2k2+1,
得4k2<2k2+1,即k2< ,
又∵k≠0,
∴直線l的斜率k的取值范圍是(﹣ ,0)∪(0, )
【解析】(1)由題意可知:橢圓焦點(diǎn)在x軸上,離心率e= = ,求得a2=2b2 . 由原點(diǎn)到直線x﹣y+ =0的距離為b,即b= = =1,即可求得2=2,即可求得橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線l的方程為y=kx+m(k≠0),代入橢圓方程,由△>0,求得m2<2k2+1,由韋達(dá)定理可知:x1+x2=﹣ ,x1x2= ,∠NF2F1=∠MF2A,且∠MF2A≠90°, + =0,由直線的斜率公式,求得2kx1x2+(m﹣k)(x1+x2)﹣2m=0.即可求得m=﹣2k,代入直線方程求得y=kx﹣2k=k(x﹣2),則直線過定點(diǎn)(2,0),由m2<2k2+1,即可求得斜率k的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b是兩個(gè)實(shí)數(shù),給出下列條件:
①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.
其中能推出:“a,b中至少有一個(gè)大于1”的條件是 .(填序號,只有一個(gè)正確選項(xiàng))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),右頂點(diǎn)為( ,0)
(1)求雙曲線C的方程;
(2)若直線l:y=kx+ 與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且 >2(其中O為原點(diǎn)).求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:函數(shù)f(x)=logax在區(qū)間(0,+∞)上是單調(diào)遞增函數(shù);命題q:不等式(a﹣2)x2+2(a﹣2)x﹣4<0對任意實(shí)數(shù)x恒成立.若p∨q為真命題,且p∧q為假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|lgx|﹣( )x有兩個(gè)零點(diǎn)x1 , x2 , 則有( )
A.x1x2<0
B.x1x2=1
C.x1x2>1
D.0<x1x2<1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O為Rt△ABC的外接圓,AB=AC,BC=4,過圓心O的直線l交圓O于P,Q兩點(diǎn),則 的取值范圍是( )
A.[﹣8,﹣1]
B.[﹣8,0]
C.[﹣16,﹣1]
D.[﹣16,0]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+2x+x﹣1,若f(x2﹣4)<2,則實(shí)數(shù)x的取值范圍是( )
A.(﹣2,2)
B.(2, )
C.(﹣ ,﹣2)
D.(﹣ ,﹣2)∪(2, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和 . (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若 ,求數(shù)列{anbn2}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正三棱柱ABC﹣A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,則AD與平面AA1C1C所成的角的正弦值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com