a=log 
1
2
2,b=log 
1
2
1
3
,c=(
1
2
0.3( 。
A、a<b<c
B、a<c<b
C、b<c<a
D、b<a<c
考點:對數(shù)值大小的比較
專題:函數(shù)的性質及應用
分析:利用指數(shù)與對數(shù)函數(shù)的單調(diào)性即可得出.
解答: 解:∵a=log 
1
2
2<0,b=log 
1
2
1
3
>log
1
2
1
2
=1,0<c=(
1
2
0.3<1,
∴a<c<b.
故選:B.
點評:本題考查了指數(shù)與對數(shù)函數(shù)的單調(diào)性,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l:x+y-2=0與圓C:
x=1+
2
cosθ
y=1+
2
sinθ
,(θ為參數(shù)),求它們的公共點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(
1
2
x-1)=2x-5,且f(a)=1,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求導y=(1+sinx)(1-2x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,0),
b
=(2,1)
(1)求
a
+3
b
a
-
b
;
(2)當k為何實數(shù)時,k
a
-
b
a
+3
b
平行,平行時它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x≤-2或x≥1},B={x|0≤x≤1},則(  )
A、A∩B=∅
B、(∁RA)⊆B
C、-1∈A∪B
D、1∈A∩B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知tanθ=2,求
sin(θ-6π)+sin(
π
2
-θ)
2sin(π+θ)+cos(-θ)
的值;
(2)已知-
π
2
<x<
π
2
,sinx+cosx=
1
5
,求tanx的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩定點A(2,5),B(-2,1),直線y=x上兩動點M,N,且|MN|=2
2
,如果直線AM與BN的交點正好落在y軸上,求M,N的坐標以及兩直線AM與BN的交點C的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求凼數(shù)y=(sinx+a)(cosx+a)(0<a≤
2
)的最值.

查看答案和解析>>

同步練習冊答案