已知{(x,y)|x2+y2≤4}⊆{(x,y)|
4x+3y≤12
y≤kx+4
y≥x-3.
}
,則k的取值范圍
[-
3
,
3
]
[-
3
,
3
]
分析:先由題意作出圖形,由題意可得兩集合分別表示的圖形是陰影部分及圓.根據(jù)題意得只要直線與已知圓相切或相離即可
解答:解:由于直線y=kx+4恒過(guò)定點(diǎn)A(0,4),作出不等式組表示的平面區(qū)域,如圖所示
{(x,y)|x2+y2≤4}⊆{(x,y)|
4x+3y≤12
y≤kx+4
y≥x-3.
}

直線y=kx+4與圓x2+y2=4相切或相離
4
1+k2
≤2

-
3
≤k≤
3

故答案為:[-
3
,
3
]
點(diǎn)評(píng):本小題主要考查二元一次不等式(組)與平面區(qū)域、圓方程的綜合應(yīng)用、不等式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)定義在R上,并且對(duì)于任意實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且x≠y時(shí),f(x)≠f(y),x>0時(shí),有f(x)>0.
(1)判斷f(x)的奇偶性;
(2)若f(1)=1,解關(guān)于x的不等式f(x)-f(
1x-1
)≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c,下列結(jié)論中錯(cuò)誤的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)y=xα的圖象滿足:當(dāng)x∈(0,1)時(shí),在直線y=x上方;當(dāng)x∈(1,+∞)時(shí),在直線y=x下方,則實(shí)數(shù)α的取值范圍是
(-∞,1)
(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)镈:(-∞,0)∪(0,+∞),且滿足對(duì)于任意x,y∈D,有f(xy)=f(x)+f(y).
(I)求f(1),f(-1)的值;
(II)判斷f(x)的奇偶性并說(shuō)明理由;
(III)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x(x-a)2,g(x)=
a2
x2
,x∈(-∞,0)且a<0.
(Ⅰ)求函數(shù)y=f(x)和y=g(x)在(-∞,0)上圖象的交點(diǎn)坐標(biāo);
(Ⅱ)設(shè)函數(shù)y=f(x),y=g(x)的圖象在同一交點(diǎn)處的兩條切線分別為l1,l2,是否存在這樣的實(shí)數(shù)a,使得l1⊥l2?若存在,請(qǐng)求出a的值和相應(yīng)交點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)若對(duì)任意x1∈[-1,0),存在x2∈[-1,0),使f(x1)≥g(x2),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案