15.解關(guān)于x的不等式a3x2-(a2+a)x+1>0.

分析 分類討論二次項(xiàng)的系數(shù)a3與0的關(guān)系,利用二次函數(shù)的性質(zhì),求得不等式的解集.

解答 解:對(duì)于不等式a3x2-(a2+a)x+1=(ax-1)•(a2x-1)>0,
(1)當(dāng)a=0時(shí),不等式即1>0,恒成立,此時(shí),不等式的解集為R.
(2)當(dāng)a>0時(shí),
若a=1,不等式即 x2-2x+1>0,∴x≠1,即不等式的解集為{x|x≠1}.
若0<a<1,則$\frac{1}{a}$<$\frac{1}{{a}^{2}}$,不等式a3x2-(a2+a)x+1>0的解集為 {x|x<$\frac{1}{a}$,或 x>$\frac{1}{{a}^{2}}$}.
若a>1,則$\frac{1}{a}$>$\frac{1}{{a}^{2}}$,不等式a3x2-(a2+a)x+1>0的解集為{x|x<$\frac{1}{{a}^{2}}$,或 x>$\frac{1}{a}$}.
②當(dāng)a<0時(shí),則$\frac{1}{a}$<$\frac{1}{{a}^{2}}$,不等式a3x2-(a2+a)x+1>0的解集為 {x|$\frac{1}{a}$<x<$\frac{1}{{a}^{2}}$ }.
綜上可得,當(dāng)a=0時(shí),不等式的解集為R;
當(dāng)a=1時(shí),不等式的解集為{x|x≠1};
當(dāng)0<a<1時(shí),不等式的解集為{x|x<$\frac{1}{a}$,或 x>$\frac{1}{{a}^{2}}$};
當(dāng)a>1時(shí),不等式的解集為{x|x>$\frac{1}{a}$,或 x<$\frac{1}{{a}^{2}}$};
當(dāng)a<0時(shí),不等式的解集為 {x|$\frac{1}{a}$<x<$\frac{1}{{a}^{2}}$ }.

點(diǎn)評(píng) 本題主要考查一元二次不等式的解法,二次函數(shù)的性質(zhì),體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.(1)如圖是一容量為100的樣本的重量的頻率分布直方圖,則由圖可估計(jì)樣本重量的中位數(shù)為12.5;
(2)在回歸分析中,代表了數(shù)據(jù)點(diǎn)和它在回歸直線上相應(yīng)位置的差異的是殘差平方和;
(3)如果根據(jù)性別與是否愛(ài)好運(yùn)動(dòng)的列聯(lián)表得到K2≈3.852,所以判斷性別與運(yùn)動(dòng)有關(guān),那么這種判斷犯錯(cuò)的可能性不超過(guò)5%;
 P(K2≥k) 0.100 0.050 0.010
 k 2.706 3.841 6.635
(4)設(shè)有一個(gè)回歸方程為$\widehat{y}$=3-5x,則變量x增加一個(gè)單位時(shí)y平均減少5個(gè)單位;
(5)兩個(gè)變量x與y的回歸模型中分別選擇了4個(gè)不同模型,它們的相關(guān)指數(shù)R2如下,模型1的相關(guān)指數(shù)R2為0.98,模型2的相關(guān)指數(shù)R2為0.80,模型3的相關(guān)指數(shù)R2為0.50,模型4的相關(guān)指數(shù)R2為0.25.其中擬合效果最好的模型是模型4.其中正確命題的序號(hào)為(1)(2)(3)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=cos(2x+$\frac{π}{3}$),則下列說(shuō)法正確的是(  )
A.函數(shù)f(x)=cos(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度可得到y(tǒng)=sin2x的圖象
B.x=$\frac{π}{6}$是函數(shù)f(x)的一個(gè)對(duì)稱軸
C.($\frac{π}{12}$,0)是函數(shù)f(x)的一個(gè)對(duì)稱中心
D.函數(shù)f(x)=cos(2x+$\frac{π}{3}$)在[0,$\frac{π}{2}$]上的最小值為-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖,橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$═1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,x軸被曲線C2:y=x2-b截得的線段長(zhǎng)等于C1的長(zhǎng)半軸長(zhǎng).C2與y軸的交點(diǎn)為M,過(guò)坐標(biāo)原點(diǎn)O的直線l與C2相交于點(diǎn)A,B,兩直線MA,MB分別與C1相交于點(diǎn)D,E.
①曲線C1,C2的方程分別為$\frac{{x}^{2}}{4}$+y2=1,y=x2-1;
②MD⊥ME;
③記△MAB,△MDE的面積分別為S1,S2,則$\frac{{S}_{1}}{{S}_{2}}$的最大值為$\frac{25}{64}$;
④記△MAB,△MDE的面積分別為S1,S2,當(dāng)$\frac{{S}_{1}}{{S}_{2}}$=$\frac{17}{32}$時(shí),直線l的方程為:y=$\frac{3}{2}$x或y=-$\frac{3}{2}$x.
以上列說(shuō)法正確的有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知A={x|1-a≤x≤a+4},B={x|x<-1或x>5}.
(1)若A∩B=∅,求a的取值范圍.
(2)若A∪B=B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某農(nóng)場(chǎng)在冬季進(jìn)行一次菌種培養(yǎng)需要5天時(shí)間,5天內(nèi)每天發(fā)生低溫凍害的概率均為$\frac{1}{3}$.如果5天內(nèi)沒(méi)有發(fā)生凍害,可獲利潤(rùn)10萬(wàn)元,有一天發(fā)生凍害可獲利潤(rùn)5萬(wàn)元,有兩天發(fā)生凍害可獲利潤(rùn)0萬(wàn)元,而發(fā)生3天或3天以上凍害則損失2萬(wàn)元.
(1)求一次菌種培養(yǎng)不出現(xiàn)虧損的概率;
(2)求一次菌種培養(yǎng)獲得利潤(rùn)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.某勞動(dòng)就業(yè)服務(wù)中心的7名志愿者準(zhǔn)備安排6人在周六、周日兩天在街頭做勞動(dòng)就業(yè)指導(dǎo),若每天安排3人,則不同的安排方案共有140種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)f(x)=ax(0<a<1)在[1,2]中的最大值比最小值大$\frac{a}{2}$,則a的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)f(n)=cos($\frac{nπ}{2}$+$\frac{π}{4}$),則f(1)+f(2)+…+f(2015)等于(  )
A.$\sqrt{2}$B.$-\frac{{\sqrt{2}}}{2}$C.0D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案