直線y=mx+1與雙曲線x2-y2=1有兩個不同的公共點,則實數(shù)m的取值范圍是________.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:潮陽一中2007屆高三摸底考試理科數(shù)學 題型:044

已知焦點在x軸上的雙曲線C的兩條漸近線過坐標原點,且兩條漸近線與以點A(0)為圓心,1為半徑為圓相切,又知C的一個焦點與A關于直線yx對稱.

(1)求雙曲線C的方程;

(2)Q是雙曲線C上的任一點,F1、F2為雙曲線C的左、右兩個焦點,從F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程.

(3)設直線ymx1與雙曲線C的左支交于A、B兩點,另一直線L經(jīng)過M(2,0)AB的中點,求直線Ly軸上的截距b的取值范圍.S

查看答案和解析>>

科目:高中數(shù)學 來源:2007年上海市部分重點中學高三年級聯(lián)合考試試卷、數(shù)學 題型:044

已知焦點在x軸上的雙曲線C的兩條漸近線過坐標原點,且兩條漸近線與以點為圓心,1為半徑為圓相切,又知C的一個焦點與A關于直線y=x對稱.

(1)求雙曲線C的方程;

(2)若Q是雙曲線C上的任一點,F(xiàn)1、F2為雙曲線C的左、右兩個焦點,從F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程.

(3)設直線y=mx+1與雙曲線C的左支交于A、B兩點,另一直線L經(jīng)過M(-2,0)及AB的中點,求直線L在y軸上的截距b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:潮陽一中2007屆高三摸底考試、理科數(shù)學 題型:044

解答題

已知焦點在x軸上的雙曲線C的兩條漸近線過坐標原點,且兩條漸近線與以點為圓心,1為半徑為圓相切,又知C的一個焦點與A關于直線y=x對稱.

(1)

求雙曲線C的方程;

(2)

若Q是雙曲線C上的任一點,F(xiàn)1、F2為雙曲線C的左、右兩個焦點,從F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程.

(3)

設直線y=mx+1與雙曲線C的左支交于A、B兩點,另一直線L經(jīng)過M(-2,0)及AB的中點,求直線L在y軸上的截距b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:潮陽一中2007屆高三摸底考試、文科數(shù)學 題型:044

解答題

已知焦點在x軸上的雙曲線C的兩條漸近線過坐標原點,且兩條漸近線與以點為圓心,1為半徑為圓相切,又知C的一個焦點與A關于直線y=x對稱.

(1)

求雙曲線C的方程;

(2)

若Q是雙曲線C上的任一點,F(xiàn)1、F2為雙曲線C的左、右兩個焦點,從F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程.

(3)

設直線y=mx+1與雙曲線C的左支交于A、B兩點,另一直線L經(jīng)過M(-2,0)及AB的中點,求直線L在y軸上的截距b的取值范圍.

查看答案和解析>>

同步練習冊答案