已知函數(shù)f(x)=x3+x-16.求曲線y=f(x)在點(2,-6)處的切線的方程.
∵f′(x)=3x2+1,
∴f(x)在點(2,-6)處的切線的斜率為k=f′(2)=13.
∴切線的方程為y+6=13(x-2)即y=13x-32.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)f(x)=2x(x-c)2+3在x=2處有極小值,則常數(shù)c的值為(  )
A.2或6B.6C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=x3+bx2+cx+d的大致圖象如圖所示,則x12+x22等于( 。
A.
8
9
B.
10
9
C.
16
9
D.
28
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=lnx,g(x)=
a
x
(a>0),設(shè)F(x)=f(x)+g(x).
(Ⅰ)求F(x)的單調(diào)區(qū)間;
(Ⅱ)若以y=F(x)(x∈(0,3])圖象上任意一點P(x0,y0)為切點的切線的斜率k
1
2
恒成立,求實數(shù)a的最小值.
(Ⅲ)是否存在實數(shù)m,使得函數(shù)y=g(
2a
x2+1
)+m-1的圖象與y=f(1+x2)的圖象恰好有四個不同的交點?若存在,求出m的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=x•ex在點(1,e)處的切線方程為( 。
A.y=-2ex+3eB.y=2ex-eC.y=exD.y=x-1+e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若曲線y=x3在點P(1,1)處的切線與直線ax-by-2=0互相垂直,則
a
b
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=x3-3x,若過點A(0,16)且與曲線y=f(x)相切的切線方程為y=ax+16,則實數(shù)a的值是( 。
A.-3B.3C.6D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=x3-3x2+2x,若過f(x)圖象上一點P(x0,y0)(x0≠0)的切線為l:y=kx,求k的值和P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線y=x3-x在點(1,0)處的切線與直線x+ay=1垂直,則實數(shù)a的值為(  )
A.2B.-2C.
1
2
D.-
1
2

查看答案和解析>>

同步練習(xí)冊答案