7.將編號為1,2,3,4,5,6的6張卡片,放入四個不同的盒子中,每個盒子至少放入一張卡片,則編號為3與6的卡片不在同一個盒子中的不同放法共有( 。┓N.
A.960B.1240C.1320D.1440

分析 先分類,有2,2,1,1與3,1,1,1,兩種情況,再用間接法,即可得出結(jié)論.

解答 解:根據(jù)題意,先分類,有2,2,1,1與3,1,1,1,兩種情況,放法共有$\frac{{C}_{6}^{2}{C}_{4}^{2}{C}_{2}^{1}{C}_{1}^{1}}{{A}_{2}^{2}{A}_{2}^{2}}$•${A}_{4}^{4}$+$\frac{{C}_{6}^{3}{C}_{3}^{1}{C}_{2}^{1}{C}_{1}^{1}}{{A}_{3}^{3}}$•${A}_{4}^{4}$,
編號為3與6的卡片在同一個盒子中的不同放法共有$\frac{{C}_{5}^{2}{C}_{3}^{1}{C}_{2}^{1}{C}_{1}^{1}}{{A}_{3}^{3}}$•${A}_{4}^{4}$,
∴編號為3與6的卡片不在同一個盒子中的不同放法共有$\frac{C_6^2C_4^2C_2^1C_1^1}{A_2^2A_2^2}•A_4^4+\frac{C_6^3C_3^1C_2^1C_1^1}{A_3^3}•A_4^4-\frac{C_5^2C_3^1C_2^1C_1^1}{A_3^3}•A_4^4$=1320,
故選:C.

點評 本題考查計數(shù)原理的運用,考查分類討論的數(shù)學(xué)思想,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.四棱錐P-ABCD中,底面ABCD為正方形,PA⊥面ABCD,PA=$\frac{1}{2}$AB.
(1)求PC與面PAB所成角的正切值;
(2)設(shè)M在PC上,且PD⊥面MAB,求$\frac{PM}{MC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.某城市理論預(yù)測2000年到2004年人口總數(shù)與年份的關(guān)系如表所示,線性回歸方程為$\hat y$=3.2x+3.6,則t=11.
年份200x(年)01234
人口數(shù) y (十萬)578t19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=exsinx,則f′($\frac{π}{2}$)=${e}^{\frac{π}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若(4$\sqrt{x}$+$\frac{1}{x}}$)n的展開式中各項系數(shù)之和為125,則展開式的常數(shù)項為48.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知i為虛數(shù)單位,(1-2i)•z=i3.則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知兩個不同的平面α,β,若l∥α,則”l⊥β”是”α⊥β”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若集合M={x|y=$\sqrt{x-{x^2}}$},集合N={y|y=sinx},則M∩N=( 。
A.[-1,0]B.[-1,1]C.[0,1]D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知{x|ax2+bx+c≥0}=[α,β],{x|ax2+(b-1)x+c≥0}=[p,q],若那么α、β、p、q中負數(shù)的個數(shù)為4.

查看答案和解析>>

同步練習(xí)冊答案